Nothing
GIBcont <- function(X, ncl, beta, alpha, randinit = NULL, s = -1, scale = TRUE,
maxiter = 100, nstart = 100,
verbose = FALSE) {
# Validate inputs
if (!is.numeric(ncl) || ncl <= 1 || ncl != round(ncl)) {
stop("Input 'ncl' must be a positive integer greater than 1.")
}
if (!is.numeric(beta) || beta <= 0) {
stop("Input 'beta' must be a positive number.")
}
if (!is.numeric(alpha) || alpha < 0) {
stop("Input 'alpha' must be a non-negative number.")
}
if (!is.logical(scale)) {
stop("'scale' must be a logical value (TRUE or FALSE).")
}
if (!is.numeric(maxiter) || maxiter <= 0 || maxiter != round(maxiter)) {
stop("'maxiter' must be a positive integer.")
}
if (!is.numeric(nstart) || nstart <= 0 || nstart != round(nstart)) {
stop("'nstart' must be a positive integer.")
}
if (!is.null(randinit) && (!is.numeric(randinit) || length(randinit) != nrow(X))) {
stop("'randinit' must be a numeric vector with length equal to the number of rows in 'X', or NULL.")
}
# Validate s
if (!is.numeric(s) ||
!(length(s) == 1 || length(s) == ncol(X)) ||
any(s <= 0 & s != -1)) {
stop("'s' must be either a single numeric value (-1 for automatic selection or a positive value) or a numeric vector with positive values matching the number of 'contcols'.")
}
# Check special case of alpha = 0 (DIBmix) or alpha = 1 (IBmix)
if (alpha == 1){
message('alpha = 1; running IBcont.')
best_clust <- IBcont(X, ncl, beta, randinit,
s, scale, maxiter, nstart,
verbose)
} else if (alpha == 0){
message('alpha = 0; running DIBcont - value of beta is ignored.')
best_clust <- DIBcont(X, ncl, randinit,
s, scale, maxiter, nstart,
verbose)
} else {
# Preprocessing
if (scale){
X <- preprocess_cont_data(X)
}
# Bandwidth computation
if (length(s) == 1){
if (s == -1){
s <- compute_bandwidth_cont(X)
}
}
# Compute joint probability density for continuous variables
pxy_list <- coord_to_pxy_R(as.data.frame(X), s = s, cat_cols = c(),
cont_cols = seq_len(ncol(X)), lambda = 0)
py_x <- pxy_list$py_x
px <- pxy_list$px
hy <- pxy_list$hy
bws_vec <- rep(s, ncol(X))
# Run GIB iteration for clustering
best_clust <- GIBmix_iterate(X, ncl = ncl, beta = beta, alpha = alpha, randinit = randinit, tol = 0,
py_x = py_x, hy = hy, px = px, maxiter = maxiter,
bws_vec = bws_vec, contcols = seq_len(ncol(X)),
catcols = c(), runs = nstart, verbose = verbose)
}
return(best_clust)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.