Nothing
GIBmix <- function(X, ncl, beta, alpha, catcols, contcols, randinit = NULL,
lambda = -1, s = -1, scale = TRUE,
maxiter = 100, nstart = 100,
verbose = FALSE) {
# Validate inputs
if (!is.data.frame(X)) {
stop("Input 'X' must be a data frame.")
}
if (!is.numeric(ncl) || ncl <= 1 || ncl != round(ncl)) {
stop("Input 'ncl' must be a positive integer greater than 1.")
}
if (!is.numeric(beta) || beta <= 0) {
stop("Input 'beta' must be a positive number.")
}
if (!is.numeric(alpha) || alpha < 0) {
stop("Input 'alpha' must be a non-negative number.")
}
if (!all(catcols %in% seq_along(X))) {
stop("Some 'catcols' indices are out of bounds or invalid.")
}
if (!all(contcols %in% seq_along(X))) {
stop("Some 'contcols' indices are out of bounds or invalid.")
}
if (any(duplicated(c(catcols, contcols)))) {
stop("'catcols' and 'contcols' must not overlap.")
}
if (!is.logical(scale)) {
stop("'scale' must be a logical value (TRUE or FALSE).")
}
if (!is.numeric(maxiter) || maxiter <= 0 || maxiter != round(maxiter)) {
stop("'maxiter' must be a positive integer.")
}
if (!is.numeric(nstart) || nstart <= 0 || nstart != round(nstart)) {
stop("'nstart' must be a positive integer.")
}
if (!is.null(randinit) && (!is.numeric(randinit) || length(randinit) != nrow(X))) {
stop("'randinit' must be a numeric vector with length equal to the number of rows in 'X', or NULL.")
}
# Validate lambda
if (!is.numeric(lambda) ||
!(length(lambda) == 1 || length(lambda) == length(catcols)) ||
any(lambda <= 0 & lambda != -1)) {
stop("'lambda' must be either a single numeric value (-1 for automatic selection or a positive value) or a numeric vector with positive values matching the number of 'catcols'.")
}
# Additional check for maximum lambda value for nominal variables
if (length(lambda) > 1 && length(lambda) == length(catcols)) {
max_lambda <- sapply(catcols, function(col) {
l <- length(unique(X[, col]))
(l - 1) / l
})
if (any(lambda > max_lambda)) {
stop("'lambda' values for nominal variables must not exceed their maximum allowable value of (l - 1)/l, where l is the number of categories in the variable.")
}
}
# Validate s
if (!is.numeric(s) ||
!(length(s) == 1 || length(s) == length(contcols)) ||
any(s <= 0 & s != -1)) {
stop("'s' must be either a single numeric value (-1 for automatic selection or a positive value) or a numeric vector with positive values matching the number of 'contcols'.")
}
# Check special case of alpha = 0 (DIBmix) or alpha = 1 (IBmix)
if (alpha == 1){
message('alpha = 1; running IBmix.')
best_clust <- IBmix(X, ncl, beta, catcols, contcols, randinit,
lambda, s, scale,
maxiter, nstart,
verbose)
} else if (alpha == 0){
message('alpha = 0; running DIBmix - value of beta is ignored.')
best_clust <- DIBmix(X, ncl, catcols, contcols, randinit,
lambda, s, scale,
maxiter, nstart,
verbose)
} else {
X <- data.frame(X)
X[, catcols] <- preprocess_cat_data(X[, catcols])
if (scale){
X[, contcols] <- preprocess_cont_data(X[, contcols])
}
bws_vec <- compute_s_lambda(X, contcols, catcols, s, lambda)
# Construct joint density with final bandwidths
pxy_list <- coord_to_pxy_R(X, s = bws_vec[contcols],
cat_cols = catcols, cont_cols = contcols,
lambda = bws_vec[catcols])
py_x <- pxy_list$py_x
px <- pxy_list$px
pxy <- pxy_list$pxy
hy <- pxy_list$hy
######################################################
best_clust <- GIBmix_iterate(X, ncl = ncl, beta = beta, alpha = alpha,
randinit = randinit,
tol = 0, py_x, hy, px, maxiter,
bws_vec, contcols, catcols,
runs = nstart, verbose = verbose)
######################################################
}
return(best_clust)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.