Nothing
context("Advanced Options")
test_that("ice works with indices_to_build", {
set.seed(123)
n <- 50
X <- data.frame(x1 = rnorm(n), x2 = runif(n))
y <- 2 * X$x1 + 3 * X$x2 + rnorm(n)
mod <- lm(y ~ ., data = cbind(X, y = y))
indices <- c(1, 5, 10, 20)
ice_obj <- ice(object = mod, X = X, y = y, predictor = "x1",
indices_to_build = indices, verbose = FALSE)
expect_equal(nrow(ice_obj$ice_curves), length(indices))
})
test_that("ice works with num_grid_pts", {
set.seed(123)
n <- 50
# Ensure x1 has many unique values
X <- data.frame(x1 = sort(rnorm(n)), x2 = runif(n))
y <- 2 * X$x1 + 3 * X$x2 + rnorm(n)
mod <- lm(y ~ ., data = cbind(X, y = y))
n_grid <- 10
ice_obj <- ice(object = mod, X = X, y = y, predictor = "x1",
num_grid_pts = n_grid, verbose = FALSE)
expect_equal(length(ice_obj$gridpts), n_grid)
})
test_that("ice works with probit option", {
set.seed(123)
n <- 100
X <- data.frame(x1 = rnorm(n), x2 = runif(n))
prob <- 1 / (1 + exp(-(1 * X$x1 - 1 * X$x2)))
y <- rbinom(n, 1, prob)
mod <- glm(y ~ ., data = cbind(X, y = y), family = binomial)
# ice expects probabilities when probit=TRUE or logodds=TRUE
ice_obj <- ice(object = mod, X = X, y = y, predictor = "x1",
predictfcn = function(object, newdata) predict(object, newdata, type = "response"),
probit = TRUE, verbose = FALSE)
expect_s3_class(ice_obj, "ice")
# Values should be on probit scale (approx range -3 to 3 usually, but can be larger)
# Check if values are not all in [0,1] which would imply probability scale
expect_true(any(ice_obj$ice_curves < 0) || any(ice_obj$ice_curves > 1))
})
test_that("dice works with custom DerivEstimator", {
set.seed(123)
n <- 50
X <- data.frame(x1 = sort(rnorm(n)), x2 = runif(n))
y <- X$x1^2 + rnorm(n)
mod <- lm(y ~ ., data = cbind(X, y = y))
ice_obj <- ice(object = mod, X = X, y = y, predictor = "x1", verbose = FALSE)
# Simple difference estimator
simple_diff <- function(y, x = ice_obj$gridpts) {
dy <- diff(y)
dx <- diff(x)
d <- dy / dx
c(d, tail(d, 1)) # Pad to same length
}
dice_obj <- dice(ice_obj, DerivEstimator = simple_diff)
expect_s3_class(dice_obj, "dice")
expect_equal(dim(dice_obj$d_ice_curves), dim(ice_obj$ice_curves))
})
test_that("clusterICE works with centered=TRUE", {
set.seed(123)
n <- 50
X <- data.frame(x1 = rnorm(n), x2 = runif(n))
y <- 2 * X$x1 + 3 * X$x2 + rnorm(n)
mod <- lm(y ~ ., data = cbind(X, y = y))
ice_obj <- ice(object = mod, X = X, y = y, predictor = "x1", verbose = FALSE)
pdf(NULL)
cl <- clusterICE(ice_obj, nClusters = 2, centered = TRUE, plot = FALSE)
invisible(dev.off())
expect_s3_class(cl$cl, "kmeans")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.