R/pc.R

Defines functions pc

Documented in pc

#' Participation coefficient
#'
#' Calculating participation coefficient for connector nodes.
#'
#' @encoding UTF-8
#'
#' @param network.or.subnet_mat1 An igraph object or matrix. An "igraph" object with node attribute 'level' or a matrix representing one subnetwork. See details.
#' @param subnet_mat2 A matrix representing one subnetwork.
#' @param weighted Logical. Default to FALSE. If TRUE, weighted degree defined as the sum of interaction strengths attached to a connector node is used.

#' @details
#' In this package, a tripartite network contains three groups of nodes (a-nodes,b-nodes,c-nodes)  and two subnetworks (P includes the links between a-nodes and b-nodes, Q includes the links between b-nodes and c-nodes). Connector nodes belong to b-nodes.
#'
#' The **pc** function calculates the participation coefficient following Dominguez-Garcia and Kefi (2024). For each connector node \emph{i}, \eqn{pc_{i}} is calculated as two times the ratio between the lowest degree in both interaction subnetworks divided by the total degree of the node (\eqn{2\frac{d_{lowest}}{d_{total}}}).
#' Hence, the participation coefficient for all connector nodes (\eqn{PC_{c}}) is represented by the average value of all \eqn{pc_{i}}.
#'
#' Two types of inputs \code{network.or.subnet_mat1} can be processed:
#' \itemize{
#' \item An "igraph" object with node attribute 'level' (0 for a-nodes, 1 for b-nodes,2 for c-nodes). If the input is a weighted network, the edge should have a 'weight' attribute.
#' \item Or a matrix representing subnetwork P, and must be input with \code{subnet_mat2} representing subnetwork Q.
#' }
#'
#' If the inputs are two matrices, please make sure the rows of
#'  \code{network.or.subnet_mat1} and \code{subnet_mat2} both represent the groups of connector species,i.e, the b-group species. If both matrices have row names, then the function matches row
#'  names to produce connector nodes. Otherwise, row numbers are assigned to row names and matched. Within the two matrices (P and Q), columns represents a-group nodes and c-group nodes respectively.
#'  Elements in matrices are non-zero values if two nodes are linked with or without weights, and 0 otherwise.
#'
#' @return
#' Return a numeric value representing participation coefficient for connector species.
#'
#' @import igraph
#' @export
#' @references
#'
#' Battiston, F., Nicosia, V. & Latora, V. (2014) Structural measures for multiplex networks. Physical Review E, 89, 032804.
#'
#' Dominguez-Garcia, V. and Kefi, S. (2024). The structure and robustness of ecological networks with two interaction types. PLOS Computational Biology, 20(1), e1011770.
#'
#' Guimera, R. & Amaral, L.A.N. (2005) Cartography of complex networks: modules and universal roles. Journal of Statistical Mechanics: Theory and Experiment, 2005, P02001.
#'
#'
#' @examples
#'
#' ## generate a random binary tripartite network
#' set.seed(12)
#' Net <- build_toy_net(11,15,16,0.2)
#' pc(Net)
#'
#' ##empirical network
#' data(PPH_Coltparkmeadow)
#' Net <- PPH_Coltparkmeadow
#' pc(Net)
#' set.seed(13)
#' library(igraph)
#' E(Net)$weight<-runif(length(E(Net)),0.1,1)#random weights assigned
#' pc(Net,weighted=TRUE)
#'
#' ##input as binary matrices,with row names.
#' md1 <- matrix(sample(c(0,1),8*11,replace=TRUE),8,11)
#' dimnames(md1) = list(paste0("b",1:8),paste0("c",1:11))
#' md2 <- matrix(sample(c(0,1),10*12,replace=TRUE),10,12)
#' dimnames(md2) = list(paste0("b",1:10),paste0("a",1:12))
#' pc(md1,md2)
#'
#' ##input as weighted matrices,with row numbers as row names.
#' mdw1 <- matrix(sample(c(rep(0,40),runif(48,0,1))),8,11)
#' mdw2 <- matrix(sample(c(rep(0,40),runif(80,0,1))),10,12)
#' pc(mdw1,mdw2)
#' pc(mdw1,mdw2,weighted=TRUE)
#'
pc <- function(network.or.subnet_mat1, subnet_mat2 = NULL,weighted=FALSE) {
   if(inherits(network.or.subnet_mat1,"igraph")==T){
      network<-adjust_net(network.or.subnet_mat1,weighted=T)
      mat<-as.matrix(network[])
      mat1<-t(mat[V(network)$level==0,V(network)$level==1])
      mat2<-mat[V(network)$level==1,V(network)$level==2]
   }
   else if(inherits(network.or.subnet_mat1,c("matrix","data.frame"))==T && inherits(subnet_mat2,c("matrix","data.frame"))==T){
      mat1<-network.or.subnet_mat1
      mat2<-subnet_mat2
      if(is.null(rownames(mat1)) | is.null(rownames(mat2))){
         message("No rownames for matrices, so row IDs are used!")
         rownames(mat1)<-paste0("mid_spe",seq=1:nrow(mat1))
         rownames(mat2)<-paste0("mid_spe",seq=1:nrow(mat2))
         matrow<-unique(c(rownames(mat1),rownames(mat2)))
      }
      #if(nrow(mat1)!=nrow(mat2))
      #   message("re-check whether the row name of network.or.subnet_mat1 is corresponding to the row name of subnet_mat2!!!")
      if(!is.null(rownames(mat1)) & !is.null(rownames(mat2)) & sum(is.na(rownames(mat1)))==0 & sum(is.na(rownames(mat2)))==0){
         matrow<-unique(c(rownames(mat1),rownames(mat2)))
         if(length(matrow)==0) stop("No connectors existed.")
      }
      else {stop("Make sure matrices either have no row names or have full row names. No NA!")}

      mat_1<-matrix(0,length(matrow),ncol(mat1))
      rownames(mat_1)<-matrow
      mat_1[rownames(mat1),]<-mat1
      #mat_1[mat_1>0]<-1
      mat_2<-matrix(0,length(matrow),ncol(mat2))
      rownames(mat_2)<-matrow
      mat_2[rownames(mat2),]<-mat2
      #mat_2[mat_2>0]<-1
      mat1<-mat_1
      mat2<-mat_2
   }
   else
      stop("Please check the type of 'network.or.subnet_mat1' or 'subnet_mat2'")
   if(!weighted){
      mat1[mat1>0]<-1
      mat2[mat2>0]<-1
      logi <- rowSums(mat1) * rowSums(mat2) != 0
      m1 <- mat1[logi,]
      m2 <- mat2[logi,]
      degree_mat <- rbind(rowSums(m1), rowSums(m2))
      PR_C <-
         mean(2 * apply(degree_mat, 2, min) / apply(degree_mat, 2, sum))
      #message(paste(c("PCc"), "=", seq = c(PR_C)), "\n")
      return(PR_C)
   }else{
      logi <- rowSums(mat1) * rowSums(mat2) != 0
      m1 <- mat1[logi,]
      m2 <- mat2[logi,]
      degree_mat <- rbind(rowSums(m1), rowSums(m2))
      PR_C <-
         mean(2 * apply(degree_mat, 2, min) / apply(degree_mat, 2, sum))
      #message(paste(c("PCc_weighted"), "=", seq = c(PR_C)), "\n")
      return(PR_C)
   }
}

Try the ILSM package in your browser

Any scripts or data that you put into this service are public.

ILSM documentation built on Aug. 8, 2025, 7:42 p.m.