R/ind_init.R

Defines functions ind_init

Documented in ind_init

#' Initialization of indicator-pressure models
#'
#' \code{ind_init} combines the time vector and the indicator (IND) and pressure data into
#' one tibble with defined training and test observations. All INDs are combined
#' with all pressures provided as input.
#'
#' @param ind_tbl A data frame, matrix or tibble containing only the (numeric) IND
#'  variables. Single indicators should be coerced into a data frame to keep the
#'  indicator name. If kept as vector, default name will be  `ind`.
#' @param press_tbl A data frame, matrix or tibble containing only the (numeric)
#'  pressure variables. Single pressures should be coerced into a data frame to keep
#'  the pressure name. If kept as vector, default name will be `press`.
#' @param time A vector containing the actual time steps (e.g. years; should be the same
#'  as in the IND and pressure data).
#' @param train The proportion of observations that should go into the training data
#'  on which the GAMs are later fitted. Has to be a numeric value between 0 and 1;
#'  the default is 0.9.
#' @param random logical; should the observations for the training data be randomly
#'  chosen? Default is FALSE, so that the last time units (years) are chosen as test data.
#'
#' @details
#' \code{ind_init} will combine every column in ind_tbl with every column in press_tbl
#' so that each row will represent one IND~press combination. The input data will be
#' split into a training and a test data set. The returned tibble is the basis for all
#' IND~pressure modeling functions.
#'
#' If not all IND~pressure combinations should be modeled,
#' the respective rows can simply be removed from the output tibble or \code{ind_init} is
#' applied multiple times on data subsets and their output tibbles merged later using
#' e.g. \code{\link[dplyr]{bind_rows}}.
#'
#' @return
#' The function returns a \code{\link[tibble]{tibble}}, which is a trimmed down version of
#' the data.frame(), including the following elements:
#' \describe{
#'   \item{\code{id}}{Numerical IDs for the IND~press combinations.}
#'   \item{\code{ind}}{Indicator names.These might be modified to exclude any character, which
#'               is not in the model formula (e.g. hyphens, brackets, etc. are replaced by an
#'               underscore, variables starting with a number will get an x before the number.}
#'   \item{\code{press}}{Pressure names.These might be modified to exclude any character, which
#'               is not in the model formula (e.g. hyphens, brackets, etc. are replaced by an
#'               underscore, variables starting with a number will get an x before the number.}
#'   \item{\code{ind_train}}{A list-column with indicator values of the training data.}
#'   \item{\code{press_train}}{A list-column with pressure values of the training data.}
#'   \item{\code{time_train}}{A list-column with the time steps of the training data.}
#'   \item{\code{ind_test}}{A list-column with indicator values of the test data.}
#'   \item{\code{press_test}}{A list-column with pressure values of the test data.}
#'   \item{\code{time_test}}{A list-column with the time steps of the test data.}
#'   \item{\code{train_na}}{logical; indicates the joint missing values in the training
#'   IND and pressure data. That includes the original NAs as well as randomly selected
#'   test observations that are within the training period. This vector is needed later
#'   for the determination of temporal autocorrelation.}
#' }
#'
#' @seealso \code{\link[tibble]{tibble}} and the \code{vignette("tibble")} for more
#'  informations on tibbles
#' @family IND~pressure modeling functions
#'
#' @export
#'
#' @examples
#' # Using the Baltic Sea demo data in this package
#' press_tbl <- press_ex[ ,-1] # excl. Year
#' ind_tbl <- ind_ex[ ,-1] # excl. Year
#' time <- ind_ex[ ,1]
#' # Assign randomly 50% of the observations as training data and
#' # the other 50% as test data
#' ind_init(ind_tbl, press_tbl, time, train = 0.5, random = TRUE)
#' # To keep the name when testing only one indicator and pressure, coerce both vectors
#' # data frames
#' ind_init(ind_tbl = data.frame(MS = ind_tbl$MS), press_tbl = data.frame(Tsum = press_tbl$Tsum),
#'  time, train = .5, random = TRUE)
ind_init <- function(ind_tbl, press_tbl, time, train = 0.9,
  random = FALSE) {

  # Data input validation -----------------------
  if (missing(ind_tbl)) {
    stop("Argument ind_tbl is missing.")
  }
  if (missing(press_tbl)) {
    stop("Argument press_tbl is missing.")
  }
  if (missing(time)) {
    stop("Argument time is missing.")
  }
  # Check parameters
  x_ <- check_ind_press(press_tbl, input = "press")
  y_ <- check_ind_press(ind_tbl)
  time_ <- check_input_vec(time, "time")
  # equal length?
  if (nrow(y_) != length(time_) || nrow(y_) != nrow(x_)) {
    stop("The time steps in time, ind_tbl and press_tbl have to be the same!")
  }

  if (train < 0 | train > 1) {
    stop("The train argument has to be between 0 and 1!")
  }

  # ----------------

  # Creates a vector with id`s for each combination
  # ind ~ press
  id <- 1:(ncol(x_) * ncol(y_))
  # Creates a vector with ind
  indicator <- rep(x = names(y_), each = ncol(x_))
  # Creates a vector with press
  pressure <- rep(x = names(x_), times = ncol(y_))
  # Calc n to split input in train and test data
  nr_train <- round(nrow(x_) * train)
  if (random) {
    select_train <- sort(sample(1:nrow(x_), size = nr_train,
      replace = FALSE))
    select_test <- sort((1:nrow(x_))[!(1:nrow(x_) %in%
      select_train)])
  } else {
    select_train <- 1:nr_train
    select_test <- (nr_train + 1):nrow(x_)
  }

  init_tab <- tibble::tibble(id = id, ind = indicator,
    press = pressure)

  # Add train and test data to output
  ind_train <- purrr::map(init_tab$ind, ~y_[select_train,
    .])
  press_train <- purrr::map(init_tab$press, ~x_[select_train,
    .])
  time_train <- purrr::map(init_tab$ind, ~time_[select_train])
  ind_test <- purrr::map(init_tab$ind, ~y_[select_test,
    .])
  press_test <- purrr::map(init_tab$press, ~x_[select_test,
    .])
  time_test <- purrr::map(init_tab$press, ~time_[select_test])

  # Name the values
  name_values <- function(x, y) {
    names(x) <- y
    return(x)
  }
  init_tab$ind_train <- purrr::map2(ind_train, time_train,
    ~name_values(.x, .y))
  init_tab$press_train <- purrr::map2(press_train,
    time_train, ~name_values(.x, .y))
  init_tab$time_train <- time_train
  init_tab$ind_test <- purrr::map2(ind_test, time_test,
    ~name_values(.x, .y))
  init_tab$press_test <- purrr::map2(press_test,
    time_test, ~name_values(.x, .y))
  init_tab$time_test <- time_test


  # Add a logical vector of NA presences in EITHER
  # ind_train or press_train (incl. NAs in the
  # original data AND of the test data if random =
  # TRUE)
  if (random == FALSE) {
    train_na <- purrr::map2(init_tab$ind, init_tab$press,
      ~is.na(y_[select_train, .x]) | is.na(x_[select_train,
        .y]))
    init_tab$train_na <- purrr::map2(train_na,
      time_train, ~name_values(.x, .y))
  } else {
    train_na <- purrr::map2(init_tab$ind, init_tab$press,
      ~is.na(y_[select_train, .x]) | is.na(x_[select_train,
        .y]))
    train_na <- purrr::map2(train_na, time_train,
      ~name_values(.x, .y))
    # All test observations within the training period
    # will be considered as NAs (so TRUE):
    test_na <- purrr::map(init_tab$ind, ~rep(TRUE,
      length(select_test)))
    test_na <- purrr::map2(test_na, time_test,
      ~name_values(.x, .y))
    test_na_sub <- seq_along(test_na) %>% purrr::map(~test_na[[.]][time_test[[.]] %in%
      min(time_train[[.]]):max(time_train[[.]])])
    # Merge test into train
    sorted_years <- order(as.numeric(c(names(train_na[[1]]),
      names(test_na_sub[[1]]))))
    # (as selected years are for all the same I get the
    # sorted years from the first list)
    init_tab$train_na <- seq_along(train_na) %>%
      purrr::map(~c(train_na[[.]], test_na_sub[[.]])[sorted_years])
  }

  # Check if there are too many NAs in the test data
  # and return warning
  test_steps <- length(select_test)
  test_na <- purrr::map2(init_tab$ind, init_tab$press,
    ~is.na(y_[select_test, .x]) | is.na(x_[select_test,
      .y]))
  prop_na <- purrr::map_dbl(test_na, ~sum(.)/test_steps)

  if (any(prop_na > 0.5)) {
    sel <- which(prop_na > 0.5)
    too_many_nas <- init_tab[sel, 1:3]
    too_many_nas$nr_test_timesteps <- test_steps
    too_many_nas$NAs_in_ind_press <- purrr::map_int(test_na,
      .f = sum)[sel]
    message(paste0("NOTE: For the following IND~pressure combinations the number of NAs ",
      "in the test data exceeds 50%! This will cause biased or no results when ",
      "calculating the normalized root mean square error (NRMSE) in model_gam()/",
      "model_gamm(). You might want to choose a different test period, ",
      "replace the NAs with means/interpolated values or remove specific indicator ",
      "or pressure variables"))
    print(too_many_nas)
  }

  ### END OF FUNCTION
  return(init_tab)
}

Try the INDperform package in your browser

Any scripts or data that you put into this service are public.

INDperform documentation built on Jan. 11, 2020, 9:08 a.m.