Nothing
#' `cgeneric_get` is an internal function used by
#' `graph`, `pred`, `initial`, `mu` or `prior`
#' methods for `cgeneric`.
#' @description
#' The `generic_get` retrieve a model property specified by
#' `cmd` on an `cgeneric` object.
#' The functions listed below are for each `cmd` case.
#' @param model a `cgeneric` object.
#' @param cmd an string to specify which model element to get
#' @param theta numeric vector with the model parameters.
#' If missing, the [initial()] will be used.
#' @param optimize logical. If missing or FALSE,
#' the graph and precision are as a sparse matrix.
#' If TRUE, graph only return the row/col indexes and
#' precision return only the elements as a vector.
#' @useDynLib INLAtools
#' @return depends on `cmd`
#' @seealso check the examples in [cgeneric_generic0()]
cgeneric_get <- function(model,
cmd = c("graph", "Q", "initial", "mu", "log_prior"),
theta,
optimize = TRUE) {
ret <- NULL
cmd[cmd == "log.prior"] <- "log_prior"
cmd <- unique(cmd)
## print(c(cmd = cmd))
cgdata <- model$f$cgeneric$data
stopifnot(!is.null(cgdata))
stopifnot(!is.null(cgdata$ints))
stopifnot(!is.null(cgdata$characters))
cmds <- c("graph", "Q", "initial", "mu", "log_prior")
cmd <- match.arg(cmd,
cmds,
several.ok = TRUE)
stopifnot(length(cmd)>0)
if(missing(theta)) {
if(cmd %in% c("Q", "log_prior")) {
stop("Please provide 'theta'!")
} else {
theta <- NULL
ntheta = 0L
}
} else {
if(inherits(theta, "matrix")) {
ntheta <- as.integer(ncol(theta))
} else {
ntheta <- 1L
}
theta <- as.numeric(theta)
}
## from Version 0.0.3.902 (and src/cgeneric_get.c)
## split each sparse matrix into list elements:
## nr, nc, m, i, j, x
nsm <- length(cgdata$smatrices)
if(nsm>0) {
for(i in 1:nsm) {
smi <- cgdata$smatrices[[i]]
mi <- as.integer(smi[3])
cgdata$smatrices[[i]] <- list(
nr = as.integer(smi[1]),
nc = as.integer(smi[2]),
m = mi,
i = as.integer(smi[3+1:mi]),
j = as.integer(smi[3+mi+1:mi]),
x = smi[3+2*mi+1:mi]
)
}
}
if(length(cmd) == 1) {
ret <- .Call(
"inla_cgeneric_element_get",
cmd,
theta,
as.integer(ntheta),
cgdata$ints,
cgdata$doubles,
cgdata$characters,
cgdata$matrices,
cgdata$smatrices,
PACKAGE = "INLAtools"
)
if((cmd %in% c("graph", "Q")) && (!optimize)) {
if(cmd == "graph") {
ij <- ret
ret <- rep(1, length(ij[[1]]))
} else {
ij <- .Call(
"inla_cgeneric_element_get",
"graph",
NULL,
as.integer(ntheta),
cgdata$ints,
cgdata$doubles,
cgdata$characters,
cgdata$matrices,
cgdata$smatrices,
PACKAGE = "INLAtools"
)
}
ret <- Matrix::sparseMatrix(
i = ij[[1]] + 1L,
j = ij[[2]] + 1L,
x = ret,
symmetric = TRUE,
repr = "T"
)
}
return(ret)
}
names(cmd) <- cmd
ret <-
lapply(
cmd, function(x) {
.Call(
"inla_cgeneric_element_get",
x,
theta,
as.integer(ntheta),
cgdata$ints,
cgdata$doubles,
cgdata$characters,
cgdata$matrices,
cgdata$smatrices,
PACKAGE = "INLAtools"
)
}
)
if(optimize) {
return(ret)
}
if(any(cmd == "Q")) {
if(any(cmd == "graph")) {
ij <- ret$graph
ret$graph <- Matrix::sparseMatrix(
i = ret$graph[[1]] + 1L,
j = ret$graph[[2]] + 1L,
x = rep(1, length(ret$graph[[1]])),
symmetric = TRUE,
repr = "T"
)
x <- ret$Q
ret$Q <- ret$graph
ret$Q@x <- x
} else {
ij <- .Call(
"inla_cgeneric_element_get",
"graph",
theta,
as.integer(ntheta),
cgdata$ints,
cgdata$doubles,
cgdata$characters,
cgdata$matrices,
cgdata$smatrices,
PACKAGE = "INLAtools"
)
ret$Q <- Matrix::sparseMatrix(
i = ij[[1]] + 1L,
j = ij[[2]] + 1L,
x = ret$Q,
symmetric = TRUE,
repr = "T"
)
}
}
return(ret)
}
#' @describeIn cgeneric_get
#' Retrive the initial parameter(s) of an `cgeneric` model.
#' @export
initial.cgeneric <- function(model) {
cgeneric_get(model, "initial")
}
#' @describeIn cgeneric_get
#' Evaluate the mean for an `cgeneric` model.
#' @export
mu.cgeneric <- function(model, theta) {
cgeneric_get(model, "mu", theta = theta)
}
#' @describeIn cgeneric_get
#' Retrieve the graph of an `cgeneric` object
#' @param optimize logical indicating if it is to be
#' returned only the elements and not as a sparse matrix.
#' @export
graph.cgeneric <- function(model, optimize) {
if(missing(optimize)) {
optimize <- FALSE
}
return(cgeneric_get(
model, "graph",
optimize = optimize))
}
#' @describeIn cgeneric_get
#' Retrieve the precision of an `cgeneric` object
#' @export
prec.cgeneric <- function(model, theta, optimize) {
if(missing(optimize)) {
optimize <- FALSE
}
cgeneric_get(model,
cmd = "Q",
theta = theta,
optimize = optimize)
}
#' @describeIn cgeneric_get
#' Evaluate the prior for an `cgeneric` model
#' @return numeric scalar (if numeric vector is provided
#' for theta) or vector (if numeric matrix is provided
#' for theta).
#' @export
#' @examples
#'
#' old.par <- par(no.readonly = TRUE)
#'
#' ## Setting the prior parameters
#' prior.par <- c(1, 0.5) # P(sigma > 1) = 0.5
#' cmodel <- cgeneric(
#' model = "iid", n = 10,
#' param = prior.par)
#'
#' ## prior summaries: sigma and log-precision
#' (lamb <- -log(prior.par[2])/prior.par[1])
#' (smedian <- qexp(0.5, lamb))
#' (smean <- 1/lamb)
#'
#' ## mode: at the minimum of - log-prior
#' (lpmode <- optimize(function(x)
#' -prior(cmodel, theta = x),
#' c(-10, 30))$minimum)
#' ## mean: integral of x*f(x)dx
#' (lpmean <- integrate(function(x)
#' exp(prior(cmodel, theta = matrix(x, 1)))*x,
#' -10, 30)$value)
#'
#' ## prior visualization: log(precision) and sigma
#' par(mfrow = c(1, 2))
#' plot(function(x)
#' exp(prior(cmodel, theta = matrix(x, nrow=1))),
#' -3, 3, n = 601, xlab = "log-precision",
#' ylab = "density")
#' abline(v = lpmode, lwd = 3, col = 2)
#' rug(-2*log(smedian), lwd = 3, col = 3)
#' rug(lpmean, lwd = 3, col = 4)
#' plot(function(x)
#' exp(prior(cmodel,
#' theta = matrix(
#' -2*log(x),
#' nrow = 1))+log(2)-log(x)),
#' 1/100, 10, n = 1000,
#' xlab = expression(sigma),
#' ylab = "density")
#' plot(function(x) dexp(x, lamb),
#' 1/100, 10, n = 1000,
#' add = TRUE, lty = 2, col = 2)
#' rug(smedian, lwd = 3, col = 3)
#' rug(smean, lwd = 3, col = 4)
#'
#' par(old.par)
#'
prior.cgeneric <- function(model, theta) {
return(cgeneric_get(model = model,
cmd = "log_prior",
theta = theta))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.