Description Usage Arguments Value Acknowledgments Author(s) References See Also Examples
Fits a Proportional Hazards Time-To-Event Regression Model saturated with first and second order terms. Computes p-values of significance of regression coefficients of pairwise interaction effects in a Cox-PH model.
1 2 | cph.int(X,
int.term)
|
X |
|
int.term |
|
list
of 2 fields:
raw |
Raw p-value of covariates pairwise interaction statistics significance |
fdr |
FDR-adjusted p-value of covariates pairwise interaction statistics significance |
This work made use of the High Performance Computing Resource in the Core Facility for Advanced Research Computing at Case Western Reserve University. We are thankful to Ms. Janet Schollenberger, Senior Project Coordinator, CAMACS, as well as Dr. Jeremy J. Martinson, Sudhir Penugonda, Shehnaz K. Hussain, Jay H. Bream, and Priya Duggal, for providing us the data related to the samples analyzed in the present study. Data in this manuscript were collected by the Multicenter AIDS Cohort Study (MACS) at (https://www.statepi.jhsph.edu/macs/macs.html) with centers at Baltimore, Chicago, Los Angeles, Pittsburgh, and the Data Coordinating Center: The Johns Hopkins University Bloomberg School of Public Health. The MACS is funded primarily by the National Institute of Allergy and Infectious Diseases (NIAID), with additional co-funding from the National Cancer Institute (NCI), the National Heart, Lung, and Blood Institute (NHLBI), and the National Institute on Deafness and Communication Disorders (NIDCD). MACS data collection is also supported by Johns Hopkins University CTSA. This study was supported by two grants from the National Institute of Health: NIDCR P01DE019759 (Aaron Weinberg, Peter Zimmerman, Richard J. Jurevic, Mark Chance) and NCI R01CA163739 (Hemant Ishwaran). The work was also partly supported by the National Science Foundation grant DMS 1148991 (Hemant Ishwaran) and the Center for AIDS Research grant P30AI036219 (Mark Chance).
Jean-Eudes Dazard <jean-eudes.dazard@case.edu>
Maintainer: Jean-Eudes Dazard <jean-eudes.dazard@case.edu>
Dazard J-E., Ishwaran H., Mehlotra R.K., Weinberg A. and Zimmerman P.A. (2018). "Ensemble Survival Tree Models to Reveal Pairwise Interactions of Variables with Time-to-Events Outcomes in Low-Dimensional Setting" Statistical Applications in Genetics and Molecular Biology, 17(1):20170038.
Ishwaran, H. and Kogalur, U.B. (2007). "Random Survival Forests for R". R News, 7(2):25-31.
Ishwaran, H. and Kogalur, U.B. (2013). "Contributed R Package randomForestSRC: Random Forests for Survival, Regression and Classification (RF-SRC)" CRAN.
R package randomForestSRC
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 | #===================================================
# Loading the library and its dependencies
#===================================================
library("IRSF")
## Not run:
#===================================================
# IRSF package news
#===================================================
IRSF.news()
#================================================
# MVR package citation
#================================================
citation("IRSF")
#===================================================
# Loading of the Synthetic and Real datasets
# Use help for descriptions
#===================================================
data("MACS", package="IRSF")
?MACS
head(MACS)
#===================================================
# Synthetic dataset
# Continuous case:
# All variables xj, j in {1,...,p}, are iid
# from a multivariate uniform distribution
# with parmeters a=1, b=5, i.e. on [1, 5].
# rho = 0.50
# Regression model: X1 + X2 + X1X2
#===================================================
seed <- 1234567
set.seed(seed)
n <- 200
p <- 5
x <- matrix(data=runif(n=n*p, min=1, max=5),
nrow=n, ncol=p, byrow=FALSE,
dimnames=list(1:n, paste("X", 1:p, sep="")))
beta <- c(rep(1,2), rep(0,p-2), 1)
covar <- cbind(x, "X1X2"=x[,1]*x[,2])
eta <- covar %*% beta # regression function
seed <- 1234567
set.seed(seed)
lambda0 <- 1
lambda <- lambda0 * exp(eta - mean(eta)) # hazards function
tt <- rexp(n=n, rate=lambda) # true (uncensored) event times
tc <- runif(n=n, min=0, max=3.9) # true (censored) event times
stime <- pmin(tt, tc) # observed event times
status <- 1 * (tt <= tc) # observed event indicator
X <- data.frame(stime, status, x)
#===================================================
# Synthetic dataset
# Ranking of pairwise interactions between individual
# or noise variables by bivariate
# Interaction Minimal Depth of a Maximal Subtree (IMDMS)
# Serial mode
#===================================================
X.int.mdms <- rsf.int(X=X,
ntree=1000,
method="imdms",
splitrule="logrank",
importance="random",
B=1000,
ci=90,
parallel=FALSE,
conf=NULL,
verbose=FALSE,
seed=seed)
#===================================================
# Synthetic dataset
# Proportional Hazards Time-To-Event Regression Model
# saturated with first and second order terms.
#===================================================
X.int.cph <- cph.int(X=X,
int.term=rownames(X.int.mdms))
#===================================================
# Real dataset
#===================================================
seed <- 1234567
data("MACS", package="IRSF")
X <- MACS[,c("TTX","EventX","Race","Group3",
"DEFB.CNV3","CCR2.SNP","CCR5.SNP2",
"CCR5.ORF","CXCL12.SNP2")]
#===================================================
# Real dataset
# Ranking of pairwise interactions between individual
# or noise variables by bivariate
# Interaction Minimal Depth of a Maximal Subtree (IMDMS)
# Entries [i][j] indicate the normalized minimal depth
# of a variable [j] w.r.t. the maximal subtree for variable [i]
# (normalized w.r.t. the size of [i]'s maximal subtree).
#===================================================
MACS.int.mdms <- rsf.int(X=X,
ntree=1000,
method="imdms",
splitrule="logrank",
importance="random",
B=1000,
ci=80,
parallel=TRUE,
conf=conf,
verbose=TRUE,
seed=seed)
#===================================================
# Real dataset
# Proportional Hazards Time-To-Event Regression Model
# saturated with first and second order terms.
#===================================================
MACS.int.cph <- cph.int(X=X,
int.term=rownames(MACS.int.mdms))
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.