Nothing
#' Caculate the estimator on the MMLPCA method
#'
#' @param data is the orignal data set
#' @param data0 is the missing data set
#' @param real is to judge whether the data set is a real missing data set
#' @param example is to judge whether the data set is a simulation example.
#'
#' @return XMMLPCA, MSEMMLPCA, MAEMMLPCA, REMMLPCA, GCVMMLPCA,timeMMLPCA
#' @export
#'
#' @examples
#' library(MASS)
#' n=100;p=10;per=0.1
#' X0=data=matrix(mvrnorm(n*p,0,1),n,p)
#' m=round(per*n*p,digits=0)
#' mr=sample(1:(n*p),m,replace=FALSE)
#' X0[mr]=NA;data0=X0
#' MMLPCA(data=data,data0=data0,real=FALSE,example=FALSE)
##the MMLPCA method
MMLPCA=function(data=0,data0,real=TRUE,example=FALSE)
#It defaults that the data set is a real data set
{#1
if (real||example){#2
etatol=0.7
}else{#2
etatol=0.9
}#2
lll=0
time=system.time(#2
while(lll==0){#3
X0=data0
n=nrow(X0);p=ncol(X0)
mr=which(is.na(X0)==TRUE)
m=nrow(as.matrix(mr))
cm0=colMeans(X0,na.rm=T)
ina=as.matrix(mr%%n)
jna=as.matrix(floor((mr+n-1)/n))
data0[is.na(data0)]=cm0[ceiling(which(is.na(X0))/n)]
X=as.matrix(data0)
Z=scale(X,center=TRUE,scale=FALSE)
tol=1e-5;nb=10;niter=0;d=1;SS=1
R=cor(Z)
lambda=svd(R)$d;l=lambda/sum(lambda);J=rep(l,times=p);dim(J)=c(p,p)
upper.tri(J,diag=T);J[lower.tri(J)]=0;eta=matrix(colSums(J),nrow=1,ncol=p,byrow=FALSE)
ww=which(eta>=etatol);k=ww[1]
while((SS>=tol)&(niter<=nb)){#4
niter=niter+1
Zold=Z
R=cor(Z)
A=svd(Z)$v
Ak=matrix(A[,1:k],p,k)
for (i in 1:n) {#5
M=is.na(X0[i,])
job=which(M==FALSE);jna=which(M==TRUE)
piob=nrow(as.matrix(job));pina=nrow(as.matrix(jna))
while((piob>0)&(pina>0)){#6
Qi=matrix(0,p,p)
for( u in 1:piob){#7
Qi[job[u],u]=1
}#7
for( v in 1:pina){#7
Qi[jna[v],v+piob]=1
}#7
zi=Z[i,]
zQi=zi%*%Qi
ZQi=Z%*%Qi
AQi=t(t(Ak)%*%Qi)
ziob=matrix(zQi[,1:piob],1,piob)
zina=matrix(zQi[,piob+(1:pina)],1,pina)
Ziob=matrix(ZQi[,1:piob],n,piob,byrow=FALSE)
Zina=matrix(ZQi[,piob+(1:pina)],n,pina,byrow=FALSE)
Aiob=matrix(AQi[1:piob,],piob,k,byrow=FALSE)
Aina=matrix(AQi[piob+(1:pina),],pina,k,byrow=FALSE)
zinahat=t(Aina%*%t(Aiob)%*%t(ziob))
ZQi[i,piob+(1:pina)]=zinahat
Zi=ZQi%*%t(Qi)
Z=Zi
pina=0
}#6
}#5
Zrow=Znew=Z
S1=sum((data0[mr]-Zrow[mr])^2)
B=svd(Z)$u
Bk=matrix(B[,1:k],n,k)
for (j in 1:p) {#5
N=is.na(X0[,j])
iob=which(N==FALSE);ina=which(N==TRUE)
njob=nrow(as.matrix(iob));njna=nrow(as.matrix(ina))
while((njob>0)&(njna>0)){#6
Qj=matrix(0,n,n)
for(u in 1:njob){#7
Qj[u,iob[u]]=1
}#7
for(v in 1:njna){#7
Qj[v+njob,ina[v]]=1
}#7
zj=Z[,j]
zQj=Qj%*%zj
ZQj=Qj%*%Z
BQj=t(t(Bk)%*%Qj)
zjob=matrix(zQj[1:njob,],njob,1)
zjna=matrix(zQj[njob+(1:njna),],njna,1)
Zjob=matrix(ZQj[1:njob,],njob,p,byrow=FALSE)
Zjna=matrix(ZQj[njob+(1:njna),],njna,p,byrow=FALSE)
Bjob=matrix(BQj[1:njob,],njob,k,byrow=FALSE)
Bjna=matrix(t(BQj)[,njob+(1:njna)],njna,k,byrow=FALSE)
zjnahat=Bjna%*%t(Bjob)%*%zjob
ZQj[njob+(1:njna),j]=zjnahat
Zj=t(Qj)%*%ZQj
Z=Zj
njna=0
}#6
}#5
ZMMLPCA=Zcol=Znew=Z
S2=sum((data0[mr]-Zcol[mr])^2)
SS=abs(S2-S1)/S2
}#4
XMMLPCA=Xnew=Znew+matrix(rep(1,n*p),ncol=p)%*%diag(cm0)
for (j in 1:p){
Mj=is.na(X0[,j])
iob=which(Mj==FALSE)
chj=sum(abs(round(X0[iob,j])-X0[iob,j]))
if (chj==0){
XMMLPCA[,j]=round(XMMLPCA[,j])
}else{
XMMLPCA[,j]= XMMLPCA[,j]
}
}
lll=1
}#3
)#2
if(real){#2
MSEMMLPCA= MAEMMLPCA= REMMLPCA='NULL'
}else{#2
MSEMMLPCA=(1/m)*t(Xnew[mr]-data[mr])%*%(Xnew[mr]-data[mr])
MAEMMLPCA=(1/m)*sum(abs(data[mr]-Xnew[mr]))
REMMLPCA=(sum(abs(data[mr]-Xnew[mr])))/(sum(data[mr]))
}#2
lambdaMMLPCA=svd(cor(XMMLPCA))$d
lMMLPCA=lambdaMMLPCA/sum(lambdaMMLPCA);J=rep(lMMLPCA,times=p);dim(J)=c(p,p)
upper.tri(J,diag=T);J[lower.tri(J)]=0;dim(J)=c(p,p)
etaMMLPCA=matrix(colSums(J),nrow = 1,ncol = p,byrow = FALSE)
wwMMLPCA=which(etaMMLPCA>=etatol);kMMLPCA=wwMMLPCA[1]
lambdaMMLPCApk=lambdaMMLPCA[(kMMLPCA+1):p]
GCVMMLPCA=sum(lambdaMMLPCApk)*p/(p-kMMLPCA)^2
return(list(XMMLPCA=XMMLPCA,MSEMMLPCA=MSEMMLPCA,MAEMMLPCA=MAEMMLPCA,REMMLPCA=REMMLPCA,GCVMMLPCA=GCVMMLPCA,timeMMLPCA=time))
}#1
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.