Nothing
#' @title Prediction plot from \code{jmstB()}
#' @param x fitted model object
#' @param y newdata
#' @param ... others
#' @note
#' In the example code we use newdata as the data for ID 2 in the PBC2 dataset, it has follow up information till
#' 8.832. Now suppose we want to look at the survival of ID 2 under joint model
#' 1 after time 4 and for joint model 2 after time 9. For that we created the
#' newdata as if the individual is followed till for a time period
#' less than min(4,9).
#' @return Returns prediction plot for the newdata using the model fitted through \code{jmstB()}.
#' @import rstanarm
#' @import jmBIG
#' @importFrom stats median
#' @examples
#' \donttest{
#' ##
#' library(JMbayes2)
#' library(rstanarm)
#' st_pbcid<-function(){
#' new_pbcid<-pbc2.id
#' new_pbcid$time_2<-rexp(n=nrow(pbc2.id),1/10)
#' cen_time<-runif(nrow(pbc2.id),min(new_pbcid$time_2),max(new_pbcid$time_2))
#' status_2<-ifelse(new_pbcid$time_2<cen_time,1,0)
#' new_pbcid$status_2<-status_2
#' new_pbcid$time_2<-ifelse(new_pbcid$time_2<cen_time,new_pbcid$time_2,cen_time)
#' new_pbcid$time_2<-ifelse(new_pbcid$time_2<new_pbcid$years,new_pbcid$years,new_pbcid$time_2)
#' new_pbcid
#' }
#' new_pbc2id<-st_pbcid()
#' pbc2$status_2<-rep(new_pbc2id$status_2,times=data.frame(table(pbc2$id))$Freq)
#' pbc2$time_2<-rep(new_pbc2id$time_2,times=data.frame(table(pbc2$id))$Freq)
#' pbc2_new<-pbc2[pbc2$id%in%c(1:50),]
#' new_pbc2id<-new_pbc2id[new_pbc2id$id%in%c(1:50),]
#' model_jmstBdirect<-jmstB(
#' dtlong=pbc2_new,
#' dtsurv = new_pbc2id,
#' longm=list(serBilir ~ drug * year+(year|id),albumin~drug+year+(year|id)),
#' survm=list(Surv(years,status2) ~ drug,Surv(time_2,status_2) ~ drug),
#' timeVar="year",
#' id='id',
#' refresh=400,
#' nchain=1)
#' t0<-4
#' nd<-pbc2[pbc2$id %in% c(2), ]
#' nd<-nd[nd$year<t0,]
#' nd$status2<-0
#' nd$years<-t0
#' nd$time_2<-9
#' nd$status_2<-0
#' plot(x=model_jmstBdirect,y = nd)
#' ##
#' }
#' @rdname plot.jmstB
#' @method plot jmstB
#' @export
plot.jmstB<-function(x,y,...){
if(!inherits(x,'jmstB'))
stop("\n Not a 'jmbBdirect' object.\n")
result<-x
model1<-x$model1
model2<-x$model2
y<-as.data.frame(y)
newdata<-y
IDvar<-x$IDvar
ID<-as.numeric(unique(y[,IDvar]))
timeVar<-x$timeVar
if(result$BIGdata==FALSE){
first_long<-all.vars(model1$formula$Long1)[1]
scnd_long<-all.vars(model2$formula$Long1)[1]
id_var1<-model1$id_var
id_var2<-model2$id_var
long1<-model1$dataLong$Long1
long2<-model2$dataLong$Long1
surv1_var<-all.vars(model1$formula$Event)[1]
surv2_var<-all.vars(model2$formula$Event)[1]
newdata1<-newdata
newdata2<-newdata
t_0<-unique(newdata[,surv1_var])
t_1<-unique(newdata[,surv2_var])
newLdat<-newdata
newSdat<-newdata[nrow(newdata),]
plong1<-posterior_traj(model1,ids=ID)
if(t_0<=t_1){
psurv1<-posterior_survfit(model1,extrapolate=TRUE,newdataLong = newLdat,newdataEvent = newSdat,last_time =surv1_var,control=list(epoints=20) )
psurv2<-posterior_survfit(model2,extrapolate=TRUE,newdataLong = newLdat,newdataEvent = newSdat,last_time =surv2_var,control=list(epoints=20) )
}else{
psurv1<-posterior_survfit(model2,extrapolate=TRUE,newdataLong = newLdat,newdataEvent = newSdat,last_time =surv2_var,control=list(epoints=20) )
psurv2<-posterior_survfit(model1,extrapolate=TRUE,newdataLong = newLdat,newdataEvent = newSdat,last_time =surv1_var,control=list(epoints=20) )
}
plong2<-posterior_traj(model2,ids=ID)
if(t_0<=t_1){
psurv1<-psurv1[psurv1$year<=t_1,]
psurv2<-psurv2[psurv2$year<=2*t_1,]
}else{
psurv1<-psurv1[psurv1$year<=t_0,]
psurv2<-psurv2[psurv2$year<=2*t_0,]
}
names(newdata1)[which(names(newdata1)==timeVar)]<-'year'
names(newdata1)[which(names(newdata1)==first_long)]<-'yvalue1'
names(newdata2)[which(names(newdata2)==timeVar)]<-'year'
names(newdata2)[which(names(newdata2)==scnd_long)]<-'yvalue2'
}else{
first_long<-all.vars(model1$pseudoMod$formula$Long1)[1]
scnd_long<-all.vars(model2$pseudoMod$formula$Long1)[1]
id_var1<-model1$pseudoMod$id_var
id_var2<-model2$pseudoMod$id_var
surv1_var<-all.vars(model1$pseudoMod$formula$Event)[1]
surv2_var<-all.vars(model2$pseudoMod$formula$Event)[1]
newdata1<-newdata
newdata2<-newdata
t_0<-as.numeric(unique(newdata[,surv1_var]))
t_1<-as.numeric(unique(newdata[,surv2_var]))
newLdat<-newdata
newSdat<-newdata[nrow(newdata),]
plong1<-postTraj(model1,m=1,ids=ID)
if(t_0<=t_1){
psurv1<-postSurvfit(model1,ids=ID,extrapolate=TRUE,newdataLong = newLdat,
newdataEvent = newSdat,last_time =surv1_var,control=list(epoints=20))
psurv2<-postSurvfit(model2,extrapolate=TRUE,ids=ID,newdataLong=newLdat,
newdataEvent=newSdat,last_time=surv2_var,control=list(epoints=20))
}else{
psurv1<-postSurvfit(model2,ids=ID,extrapolate=TRUE,newdataLong=newLdat,
newdataEvent=newSdat,last_time=surv2_var,control=list(epoints=20))
psurv2<-postSurvfit(model1,ids=ID,extrapolate=TRUE,newdataLong=newLdat,
newdataEvent=newSdat,last_time=surv1_var,control=list(epoints=20))
}
plong2<-postTraj(model2,m=1,ids=ID)
plong1<-plong1$P1
plong2<-plong2$P1
psurv1<-psurv1$P1
names(psurv1)[which(names(psurv1)==timeVar)]<-'year'
psurv2<-psurv2$P1
names(psurv2)[which(names(psurv2)==timeVar)]<-'year'
if(t_0<=t_1){
psurv1<-psurv1[psurv1$year<=t_1,]
psurv2<-psurv2[psurv2$year<=2*t_1,]
}else{
psurv1<-psurv1[psurv1$year<=t_0,]
psurv2<-psurv2[psurv2$year<=2*t_0,]
}
names(newdata1)[which(names(newdata1)==timeVar)]<-'year'
names(newdata1)[which(names(newdata1)==first_long)]<-'yvalue1'
names(newdata2)[which(names(newdata2)==timeVar)]<-'year'
names(newdata2)[which(names(newdata2)==scnd_long)]<-'yvalue2'
}
oldpar <- par(no.readonly = TRUE)
K<-2
m<-cbind(1:K,rep(K+1,K),rep(K+2,K))
xticks<-pretty(c(newdata1$year,newdata2$year))
widths<-c(0.3,0.35,0.35)
layout(m,widths=widths)
par(mar=c(0,4.5,0,0),oma=c(4,0,3,0),cex.axis=1.1,font.axis=2,font.lab=2,font.main=2)
plot(x=newdata1$year,y=newdata1$yvalue1,type='l',las=1,ylab='',xaxt='n',lwd=1.5)
points(x=newdata1$year,y=newdata1$yvalue1,pch=8,col='red')
mtext(first_long,line=2.5,side=2,font=2)
box(lwd=1.3)
par(mar = c(0, 4.5, 0, 0))
plot(x=newdata2$year,y=newdata2$yvalue2,type='l',las=1,ylab='',xaxt='n',lwd=1.5)
points(x=newdata2$year,y=newdata2$yvalue2,pch=8,col='red')
#points(x=newdata2$year,y=newdata2$yvalue2,pch=5,col='green')
mtext(scnd_long,line=2.5,side=2,font=2)
axis(1, at = xticks)
box(lwd=1.3)
par(mar=c(0,0,0,0))
xticks<-pretty(c(psurv1$year))
plot(x=psurv1$year,y=psurv1$survpred,col='black',type='l',las=1,yaxt='n',xaxt='n',xaxs='i',ylab='',ylim=c(0,1))
polygon(c(psurv1$year,rev(psurv1$year)),c(psurv1$ci_ub,rev(psurv1$ci_lb)),col=rgb(0,0,0.6,0.4),border=NA)
lines(x=psurv1$year,y=psurv1$survpred,col='blue',lwd=2)
text(x=median(psurv1$year),y=0.99,labels = ifelse(t_0<=t_1,"Event 1","Event 2"), pos = 3, col = "black", cex = 1.6,font=2)
axis(1, at = xticks)
box(lwd=1.3)
par(mar=c(0,0,0,4.5))
xticks<-pretty(c(psurv2$year))
plot(x=psurv2$year,y=psurv2$survpred,col='black',type='l',las=1,yaxt='n',xaxt='n',xaxs='i',ylab='',ylim=c(0,1))
polygon(c(psurv2$year,rev(psurv2$year)),c(psurv2$ci_ub,rev(psurv2$ci_lb)),col=rgb(0.6,0,0.6,0.4),border = NA)
lines(x=psurv2$year,y=psurv2$survpred,col='red',lwd=2)
text(x=median(psurv2$year),y=0.99,labels = ifelse(t_0<=t_1,"Event 2","Event 1"), pos = 3, col = "black", cex = 1.6,font=2)
axis(1, at = xticks)
axis(4,las=1)
mtext('Plot for Bidirectional survival data', 3,
line = 1, outer = TRUE, font = 2, cex = 1.3)
mtext("Time", 1,
line = 2.5, outer = TRUE,font=2)
mtext("Survival Prediction", 4,
line = 2.5,font=2)
box(lwd=1.3)
on.exit(par(oldpar))
}
utils::globalVariables(c('yfit','yvalue1','ci_lb','ci_ub','survpred'))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.