View source: R/predict_support.R
predict.ps2dnormal | R Documentation |
ps2DNormal
Prediction function which returns linear
predictions at arbitrary (x, y) data locations (using ps2DNormal
with class ps2dnormal
).
## S3 method for class 'ps2dnormal'
predict(object, ..., XY)
object |
an object using ps2DNormal. |
... |
other parameters. |
XY |
a matrix of arbitrary ( |
pred |
the estimated mean at ( |
Paul Eilers and Brian Marx
Eilers, P.H.C., Marx, B.D., and Durban, M. (2015). Twenty years of P-splines, SORT, 39(2): 149-186.
Eilers, P.H.C. and Marx, B.D. (2021). Practical Smoothing, The Joys of P-splines. Cambridge University Press.
library(SemiPar)
library(fields)
library(spam)
library(JOPS)
# Get the data
data(ethanol)
x <- ethanol$C
y <- ethanol$E
z <- ethanol$NOx
# Set parameters for domain
xlo <- 7
xhi <- 19
ylo <- 0.5
yhi <- 1.25
# Set P-spline parameters, fit and compute surface
xpars <- c(xlo, xhi, 10, 3, 0.01, 1)
ypars <- c(ylo, yhi, 10, 3, 0.1, 1)
Pars1 <- rbind(xpars, ypars)
fit <- ps2DNormal(cbind(x, y, z), Pars = Pars1)
predict(fit, XY = cbind(x, y)[1:5, ])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.