View source: R/predict_support.R
predict.ps2dsignal | R Documentation |
ps2DSignal
Prediction function which returns both linear
predictor and inverse link predictions for arbitrary 2D signals (using
ps2DSignal
with class ps2dsignal
).
## S3 method for class 'ps2dsignal'
predict(object, ..., M_pred, M_type = "unfolded", type = "mu")
object |
an object using |
... |
other parameters. |
M_pred |
a matrix of |
M_type |
"stacked" or "unfolded" (default). |
type |
the mean value |
pred |
the estimated mean (inverse link function)
or the linear predictor prediction with |
Paul Eilers and Brian Marx
Marx, B.D. and Eilers, P.H.C. (2005). Multidimensional penalized signal regression, Technometrics, 47: 13-22.
Eilers, P.H.C. and Marx, B.D. (2021). Practical Smoothing, The Joys of P-splines. Cambridge University Press.
library(fields)
library(JOPS)
# Get the data
x0 <- Sugar$X
x0 <- x0 - apply(x0, 1, mean) # center Signal
y <- as.vector(Sugar$y[, 3]) # Response is Ash
# Inputs for two-dimensional signal regression
nseg <- c(7, 37)
pord <- c(3, 3)
min_ <- c(230, 275)
max_ <- c(340, 560)
M1_index <- rev(c(340, 325, 305, 290, 255, 240, 230))
M2_index <- seq(from = 275, to = 560, by = .5)
p1 <- length(M1_index)
p2 <- length(M2_index)
# Fit optimal model based on LOOCV
opt_lam <- c(8858.6679, 428.1332) # Found via svcm
Pars_opt <- rbind(
c(min_[1], max_[1], nseg[1], 3, opt_lam[1], pord[1]),
c(min_[2], max_[2], nseg[2], 3, opt_lam[2], pord[2])
)
fit <- ps2DSignal(y, x0, p1, p2, "unfolded", M1_index, M2_index,
Pars_opt,int = TRUE, ridge_adj = 0.0001,
M_pred = x0 )
predict(fit, M_pred= x0, type = "mu", M_type = "unfolded")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.