View source: R/predict_support.R
predict.psvcsignal | R Documentation |
psVCSignal
Prediction function which returns both linear
predictor and inverse link predictions for an arbitrary matrix of
signals with their vector of companion indexing covariates (using
psVCSignal
with class psvcsignal
).
## S3 method for class 'psvcsignal'
predict(object, ..., X_pred, t_pred, type = "mu")
object |
an object using |
... |
other parameters. |
X_pred |
a matrix of |
t_pred |
a |
type |
the mean value |
pred |
the estimated mean (inverse link function) (default)
or the linear predictor prediction with |
Paul Eilers and Brian Marx
Eilers, P. H. C. and Marx, B. D. (2003). Multivariate calibration with temperature interaction using two-dimensional penalized signal regression. Chemometrics and Intellegent Laboratory Systems, 66, 159–174.
Eilers, P.H.C. and Marx, B.D. (2021). Practical Smoothing, The Joys of P-splines. Cambridge University Press.
library(fds)
data(nirc)
iindex <- nirc$x
X <- nirc$y
sel <- 50:650 # 1200 <= x & x<= 2400
X <- X[sel, ]
iindex <- iindex[sel]
dX <- diff(X)
diindex <- iindex[-1]
y <- as.vector(labc[1, 1:40]) # percent fat
t_var <- as.vector(labc[4, 1:40]) # percent flour
oout <- 23
dX <- t(dX[, -oout])
y <- y[-oout]
t_var = t_var[-oout]
Pars = rbind(c(min(diindex), max(diindex), 25, 3, 1e-7, 2),
c(min(t_var), max(t_var), 20, 3, 0.0001, 2))
fit1 <- psVCSignal(y, dX, diindex, t_var, Pars = Pars,
family = "gaussian", link = "identity", int = TRUE)
predict(fit1, X_pred = dX[1:5,], t_pred = t_var[1:5])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.