Description Usage Arguments Value References Examples
This function computes FDR of importance scores and returns class-specific networks.
1 | JRF_network(out.jrf,out.perm,TH)
|
out.jrf |
output object from function JRF. |
out.perm |
output object from function Run_permutation. |
TH |
Threshold for FDR. |
out
list object containing the estimated gene-gene interactions for each class.
Petralia, F., Song, WM., Tu, Z. and Wang, P., A New Method for Joint Network Analysis Reveals Common and Different Co-Expression Patterns Among Genes and Proteins in Breast Cancer, submitted
A. Liaw and M. Wiener (2002). Classification and Regression by randomForest. R News 2, 18–22.
Xie, Y., Pan, W. and Khodursky, A.B., 2005. A note on using permutation-based false discovery rate estimates to compare different analysis methods for microarray data. Bioinformatics, 21(23), pp.4280-4288.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | # --- Derive weighted networks via JRF
nclasses=2 # number of data sets / classes
n1<-n2<-20 # sample size for each data sets
p<-5 # number of variables (genes)
genes.name<-paste("G",seq(1,p),sep="") # genes name
M=5; # total number of permutations
fdr=.001; # fdr threshold
# --- Generate data sets
data1<-matrix(rnorm(p*n1),p,n1) # generate data1
data2<-matrix(rnorm(p*n2),p,n1) # generate data2
data1[1,]<-2*data1[2,] # variable 1 and 2 interact under class 1
# --- Standardize variables to mean 0 and variance 1
data1 <- t(apply(data1, 1, function(x) { (x - mean(x)) / sd(x) } ))
data2 <- t(apply(data2, 1, function(x) { (x - mean(x)) / sd(x) } ))
# --- Run JRF and obtain importance score of interactions for each class
out<-JRF(list(data1,data2),mtry=round(sqrt(p-1)),ntree=1000,genes.name)
out.perm<-Run_permutation(list(data1,data2),mtry=round(sqrt(p-1)),ntree=1000,genes.name,M)
final.net<-JRF_network(out,out.perm,fdr)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.