R/signals.R

Defines functions signal

Documented in signal

#'Extracting the Partial Signal Of a State Space Model
#'
#'Function \code{signal} returns the signal of a state space model using only
#'subset of states.
#'
#'@export
#'@param object Object of class \code{KFS}.
#'@param states Which states are combined? Either a numeric vector containing
#'  the indices of the corresponding states, or a character vector defining the
#'  types of the corresponding states. Possible choices are
#'   \code{"all"},  \code{"level"}, \code{"slope"},
#'   \code{"trend"},  \code{"regression"}, \code{"arima"}, \code{"custom"},
#'   \code{"cycle"} or \code{"seasonal"}, where \code{"trend"} extracts states relating to trend.
#'    These can be combined. Default is \code{"all"}.
#'@param filtered If \code{TRUE}, filtered signal is used. Otherwise smoothed signal is
#'  used.
#'@return
#'\item{signal}{Time series object of filtered signal \eqn{Z_ta_t}{Z[t]a[t]} or
#'smoothed signal \eqn{Z_t\hat\alpha_t}{Z[t]\alpha[t]} using only the defined states. }
#'\item{variance}{Cov(\eqn{Z_ta_t}{Z[t]a[t]}) or Cov(\eqn{Z_t\hat\alpha_t}{Z[t]\alpha[t]}) using only the defined states.
#'For the covariance matrices of the filtered signal, only the non-diffuse part of P is used.  }
#'
#'@examples
#' model <- SSModel(log(drivers) ~ SSMtrend(1, NA) +
#'     SSMseasonal(12, sea.type = 'trigonometric', Q = NA) +
#'     log(PetrolPrice) + law,data = Seatbelts, H = NA)
#'
#' ownupdatefn <- function(pars,model,...){
#'   model$H[] <- exp(pars[1])
#'   diag(model$Q[,,1]) <- exp(c(pars[2], rep(pars[3], 11)))
#'   model
#' }
#'
#' fit <- fitSSM(inits = log(c(var(log(Seatbelts[,'drivers'])), 0.001, 0.0001)),
#'   model = model, updatefn = ownupdatefn, method = 'BFGS')
#'
#' out <- KFS(fit$model, smoothing = c('state', 'mean'))
#' ts.plot(cbind(out$model$y, fitted(out)),lty = 1:2, col = 1:2,
#'   main = 'Observations and smoothed signal with and without seasonal component')
#' lines(signal(out, states = c('regression', 'trend'))$signal, col = 4, lty = 1)
#' legend('bottomleft',
#'   legend = c('Observations', 'Smoothed signal','Smoothed level'),
#'   col = c(1, 2, 4), lty = c(1, 2, 1))
#'
signal <- function(object, states = "all", filtered = FALSE) {

  if (!inherits(object, "KFS"))
    stop("Object must be an output from function KFS.")
  if (is.numeric(states)) {
    states <- as.integer(states)
    if (min(states) < 1 | max(states) > attr(object$model, "m"))
      stop("Vector states should contain the indices or names of the states (state types) which are combined.")
  } else {
    states <- match.arg(arg = states, choices = c("all", "arima", "custom", "level","slope",
      "cycle", "seasonal", "trend", "regression"),
      several.ok = TRUE)
    if ("all" %in% states) {
      states <- as.integer(1:attr(object$model, "m"))
    } else {
      if("trend" %in% states)
        states <- c(states, "level", "slope")
      states <- which(attr(object$model, "state_types") %in% states)
    }
  }
  if (!isTRUE(length(states) > 0))
    stop("Selected states not in the model.")

  if (identical(states, as.integer(1:attr(object$model, "m")))) {
    if (all(object$model$distribution == "gaussian")) {
      if (filtered && "m" %in% names(object)) {
        return(list(signal = object$m, variance = object$P_mu))
      } else {
        if (!filtered && "muhat" %in% names(object)) {
          return(list(signal = object$muhat, variance = object$V_mu))
        }
      }
    } else {
      if (filtered && "t" %in% names(object)) {
        return(list(signal = object$t, variance = object$P_theta))
      } else {
        if (!filtered && "thetahat" %in% names(object)) {
          return(list(signal = object$thetahat, variance = object$V_theta))
        }
      }
    }
  }

  if (filtered) {
    if (!("a" %in% names(object)))
      stop("Object does not contain filtered estimates of states.")
    a <- object$a
    P <- object$P
  } else {
    if (!("alphahat" %in% names(object)))
      stop("Object does not contain smoothed estimates of states.")
    a <- object$alphahat
    P <- object$V
  }
  signal <- .Fortran(fsignaltheta, NAOK = TRUE, as.integer(dim(object$model$Z)[3] >
      1), object$model$Z, t(a)[1:attr(object$model, "m"), 1:attr(object$model,
        "n")], P[1:attr(object$model, "m"), 1:attr(object$model, "m"), 1:attr(object$model,
          "n")], as.integer(attr(object$model, "p")), as.integer(attr(object$model,
            "n")), as.integer(attr(object$model, "m")), theta = array(0, c(attr(object$model,
              "n"), attr(object$model, "p"))), V_theta = array(0, c(attr(object$model,
                "p"), attr(object$model, "p"), attr(object$model, "n"))), d = 0L,
    states, as.integer(length(states)))
  attributes(signal$theta) <- attributes(object$model$y)
  list(signal = signal$theta, variance = signal$V_theta)
}

Try the KFAS package in your browser

Any scripts or data that you put into this service are public.

KFAS documentation built on Sept. 8, 2023, 5:56 p.m.