KODAMA: Knowledge Discovery by Accuracy Maximization

An unsupervised and semi-supervised learning algorithm that performs feature extraction from noisy and high-dimensional data. It facilitates identification of patterns representing underlying groups on all samples in a data set. Based on Cacciatore S, Tenori L, Luchinat C, Bennett PR, MacIntyre DA. (2017) Bioinformatics <doi:10.1093/bioinformatics/btw705> and Cacciatore S, Luchinat C, Tenori L. (2014) Proc Natl Acad Sci USA <doi:10.1073/pnas.1220873111>.

Package details

AuthorStefano Cacciatore [aut, trl, cre] (<https://orcid.org/0000-0001-7052-7156>), Leonardo Tenori [aut] (<https://orcid.org/0000-0001-6438-059X>)
MaintainerStefano Cacciatore <tkcaccia@gmail.com>
LicenseGPL (>= 2)
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:

Try the KODAMA package in your browser

Any scripts or data that you put into this service are public.

KODAMA documentation built on Oct. 26, 2021, 1:10 a.m.