MetRef | R Documentation |
The data belong to a cohort of 22 healthy donors (11 male and 11 female) where each provided about 40 urine samples over the time course of approximately 2 months, for a total of 873 samples. Each sample was analysed by Nuclear Magnetic Resonance Spectroscopy. Each spectrum was divided in 450 spectral bins.
data(MetRef)
A list with the following elements:
data |
Metabolomic data. A matrix with 873 rows and 450 columns. |
gender |
Gender index. A vector with 873 elements. |
donor |
Donor index. A vector with 873 elements. |
Assfalg M, Bertini I, Colangiuli D, et al.
Evidence of different metabolic phenotypes in humans.
Proc Natl Acad Sci U S A 2008;105(5):1420-4. doi: 10.1073/pnas.0705685105. Link
Cacciatore S, Luchinat C, Tenori L
Knowledge discovery by accuracy maximization.
Proc Natl Acad Sci U S A 2014;111(14):5117-22. doi: 10.1073/pnas.1220873111. Link
Cacciatore S, Tenori L, Luchinat C, Bennett PR, MacIntyre DA
KODAMA: an updated R package for knowledge discovery and data mining.
Bioinformatics 2017;33(4):621-623. doi: 10.1093/bioinformatics/btw705. Link
data(MetRef) u=MetRef$data; u=u[,-which(colSums(u)==0)] u=normalization(u)$newXtrain u=scaling(u)$newXtrain class=as.numeric(as.factor(MetRef$gender)) cc= pca(u)$x plot(cc,pch=21,bg=class) class=as.numeric(as.factor(MetRef$donor)) plot(cc,pch=21,bg=rainbow(22)[class]) kk=KODAMA.matrix(u) cc=KODAMA.visualization(kk,"t-SNE") plot(cc,pch=21,bg=rainbow(22)[class])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.