KODAMA.visualization | R Documentation |
Provides a simple function to transform the KODAMA dissimilarity matrix in a low-dimensional space.
KODAMA.visualization(kk, method=c("t-SNE","MDS","UMAP"), perplexity=min(30,floor((kk$knn_Armadillo$neighbors+1)/3)-1), ...)
kk |
output of |
method |
method to be considered for transforming the dissimilarity matrix in a low-dimensional space. Choices are " |
perplexity |
Perplexity parameter. (optimal number of neighbors) for " |
... |
other parameters for " |
The function returns a matrix contains the coordinates of the datapoints in a low-dimensional space.
Stefano Cacciatore and Leonardo Tenori
Cacciatore S, Luchinat C, Tenori L
Knowledge discovery by accuracy maximization.
Proc Natl Acad Sci U S A 2014;111(14):5117-22. doi: 10.1073/pnas.1220873111. Link
Cacciatore S, Tenori L, Luchinat C, Bennett PR, MacIntyre DA
KODAMA: an updated R package for knowledge discovery and data mining.
Bioinformatics 2017;33(4):621-623. doi: 10.1093/bioinformatics/btw705. Link
L.J.P. van der Maaten and G.E. Hinton.
Visualizing High-Dimensional Data Using t-SNE.
Journal of Machine Learning Research 9 (Nov) : 2579-2605, 2008.
L.J.P. van der Maaten.
Learning a Parametric Embedding by Preserving Local Structure.
In Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS), JMLR W&CP 5:384-391, 2009.
McInnes L, Healy J, Melville J.
Umap: Uniform manifold approximation and projection for dimension reduction.
arXiv preprint:1802.03426. 2018 Feb 9.
KODAMA.visualization
data(iris) data=iris[,-5] labels=iris[,5] kk=KODAMA.matrix(data,FUN="KNN",f.par=2) cc=KODAMA.visualization(kk,"t-SNE") plot(cc,col=as.numeric(labels),cex=2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.