| OPC | R Documentation |
This function computes Online Principal Component Analysis (OPC) for the provided input data, estimating factor loadings and uniquenesses. It calculates mean squared errors and sparsity for the estimated values compared to true values.
OPC(data, m, eta)
data |
is a highly correlated online data set |
m |
is the number of principal component |
eta |
is the proportion of online data to total data |
Ao,Do
library(LaplacesDemon)
library(MASS)
n=1000
p=10
m=5
mu=t(matrix(rep(runif(p,0,1000),n),p,n))
mu0=as.matrix(runif(m,0))
sigma0=diag(runif(m,1))
F=matrix(mvrnorm(n,mu0,sigma0),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)
lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%*%epsilon)
data=mu+F%*%t(A)+epsilon
results <- OPC(data, m, eta=0.1)
print(results)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.