PC2: Apply the PC method to the Laplace factor model

View source: R/PC2.R

PC2R Documentation

Apply the PC method to the Laplace factor model

Description

This function performs principal component analysis (PCA) on a given data set to reduce dimensionality. It calculates the estimated values for the loadings, specific variances, and the covariance matrix.

Usage

PC2(data, m)

Arguments

data

The total data set to be analyzed.

m

The number of principal components to retain in the analysis.

Value

Ahat,Dhat,Sigmahat

Examples

library(LaplacesDemon)
library(MASS)
n=1000
p=10
m=5
mu=t(matrix(rep(runif(p,0,1000),n),p,n))
mu0=as.matrix(runif(m,0))
sigma0=diag(runif(m,1))
F=matrix(mvrnorm(n,mu0,sigma0),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)
lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%*%epsilon)
data=mu+F%*%t(A)+epsilon
results <- PC2(data, m)
print(results)

LFM documentation built on Dec. 6, 2025, 5:06 p.m.

Related to PC2 in LFM...