| PC2 | R Documentation |
This function performs principal component analysis (PCA) on a given data set to reduce dimensionality. It calculates the estimated values for the loadings, specific variances, and the covariance matrix.
PC2(data, m)
data |
The total data set to be analyzed. |
m |
The number of principal components to retain in the analysis. |
Ahat,Dhat,Sigmahat
library(LaplacesDemon)
library(MASS)
n=1000
p=10
m=5
mu=t(matrix(rep(runif(p,0,1000),n),p,n))
mu0=as.matrix(runif(m,0))
sigma0=diag(runif(m,1))
F=matrix(mvrnorm(n,mu0,sigma0),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)
lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%*%epsilon)
data=mu+F%*%t(A)+epsilon
results <- PC2(data, m)
print(results)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.