| IPC | R Documentation |
This function performs Incremental Principal Component Analysis (IPC) on the provided data. It updates the estimated factor loadings and uniquenesses as new data points are processed, calculating mean squared errors and loss metrics for comparison with true values.
IPC(data, m, eta)
data |
The data used in the IPC analysis. |
m |
is the number of principal component |
eta |
is the proportion of online data to total data |
Ai,Di
library(LaplacesDemon)
library(MASS)
n=1000
p=10
m=5
mu=t(matrix(rep(runif(p,0,1000),n),p,n))
mu0=as.matrix(runif(m,0))
sigma0=diag(runif(m,1))
F=matrix(mvrnorm(n,mu0,sigma0),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)
lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%*%epsilon)
data=mu+F%*%t(A)+epsilon
results <- IPC(data, m, eta=0.1)
print(results)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.