| SAPC | R Documentation |
This function calculates several metrics for the SAPC method, including the estimated factor loadings and uniquenesses, and various error metrics comparing the estimated matrices with the true matrices.
SAPC(data, m, eta)
data |
The data used in the SAPC analysis. |
m |
is the number of principal component |
eta |
is the proportion of online data to total data |
Asa,Dsa
library(LaplacesDemon)
library(MASS)
n=1000
p=10
m=5
mu=t(matrix(rep(runif(p,0,1000),n),p,n))
mu0=as.matrix(runif(m,0))
sigma0=diag(runif(m,1))
F=matrix(mvrnorm(n,mu0,sigma0),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)
lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%*%epsilon)
data=mu+F%*%t(A)+epsilon
results <- SAPC(data, m, eta=0.1)
print(results)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.