R/IPC.R

Defines functions IPC

Documented in IPC

#' @name IPC
#' @title Apply the IPC method to the Laplace factor model
#' @description This function performs Incremental Principal Component Analysis (IPC) on the provided data. It updates the estimated factor loadings and uniquenesses as new data points are processed, calculating mean squared errors and loss metrics for comparison with true values.
#' @param data The data used in the IPC analysis.
#' @param m is the number of principal component
#' @param eta is the proportion of online data to total data
#' @return Ai,Di
#' @examples
#' library(LaplacesDemon)
#' library(MASS)
#' n=1000
#' p=10
#' m=5
#' mu=t(matrix(rep(runif(p,0,1000),n),p,n))
#' mu0=as.matrix(runif(m,0))
#' sigma0=diag(runif(m,1))
#' F=matrix(mvrnorm(n,mu0,sigma0),nrow=n)
#' A=matrix(runif(p*m,-1,1),nrow=p)
#' lanor <- rlaplace(n*p,0,1)
#' epsilon=matrix(lanor,nrow=n)
#' D=diag(t(epsilon)%*%epsilon)
#' data=mu+F%*%t(A)+epsilon
#' results <- IPC(data, m, eta=0.1)
#' print(results)
#' @export
IPC<-function(data,m,eta){
  X<-as.matrix(scale(data))
  S<-cov(X)
  n<-nrow(X)
  n0<-round(eta*n)
  p<-ncol(X)
  Xbar<-colMeans(X[1:n0,])
  eig1<-eigen(cov(X[1:n0,]-Xbar))
  lambda<-eig1$values[1:m]
  V<-eig1$vectors[,1:m]
  V1<-V
  T<-matrix(rep(0,(m+1)*(m+1)),nrow=(m+1))

  for (i in (n0+1):n) {
    Xcenter<-t(X[i,]-Xbar)
    g<-t(V)%*%t(Xcenter)
    Xhat<-t(V%*%g)+Xbar
    h<-t(X[i,]-Xhat)
    hmao<-norm(h,"2")
    gamma<-as.numeric(t(h/hmao)%*%t(Xcenter))
    T[1:m,]<-cbind(((i-1)/i)*diag(lambda)+((i-1)^2/i^3)*g%*%t(g),((i-1)^2/i^3)*gamma*g)
    T[(m+1),]<-cbind(((i-1)^2/i^3)*gamma*t(g),((i-1)^2/i^3)*gamma^2)
    eig2<-eigen(T)
    lambda<-eig2$values[1:m]
    V<-(cbind(V,h/hmao)%*%eig2$vectors)[,1:m]
    Xbar<-((i-1)/i)*Xbar+(1/i)*X[i,]
  }
  V2<-V[,1:m]
  Ai<-matrix(0,nrow=p,ncol=m)
  for (j in 1:m){
    Ai[,j]<-sqrt(lambda[j])*V2[,j]
  }
  h2<-diag(Ai%*%t(Ai))
  Di<-diag(S-h2)
  return(list(Ai=Ai,Di=Di))
}

Try the LFM package in your browser

Any scripts or data that you put into this service are public.

LFM documentation built on Dec. 6, 2025, 5:06 p.m.