R/search_knn.R

Defines functions search_knn

Documented in search_knn

#' @title K nearest neighbor (KNN) search
#'
#' @description 
#' This is a wrapper for several k nearest neighbors (KNNs) algorithms 
#' in R. Currently wrapped functions are from the \code{FNN}, \code{RANN}, and 
#' \code{yaImpute} package.
#' 
#' It searches for KNN in a \eqn{N \times d} data matrix \code{data}
#' where \eqn{N} are the number of samples, and \eqn{d} is the dimension of space.
#' 
#' Either knn search in itself \code{query=NULL} or to query new data points wrt
#' to training dataset.
#' 
#' @param data an \eqn{N \times d} matrix, where \eqn{N} are the samples and 
#' \eqn{d} is the dimension of space.  For large \eqn{d} knn search can be very slow.
#' @param k number of nearest neighbors (excluding point itself). Default: \code{k=1}. 
#' @param query (optional) an \eqn{\tilde{N} \times d} matrix to find KNN in 
#' the training data for. Must have the same \eqn{d} as \code{data}; can have 
#' lower or larger \eqn{\tilde{N}} though.
#' Default: \code{query=NULL} meaning that nearest neighbors should be looked
#' for in the training data itself.
#' @param method what method should be used: \code{'FNN'}, \code{'RANN'}, 
#' or \code{'yaImpute'}.
#' @param ... other parameters passed to the knn functions in each package.
#' @keywords nonparametric classif cluster
#' @export
#' @seealso Packages \pkg{FNN}, \pkg{RANN}, and \pkg{yaImpute} 
#' for other options (\code{...}).
#' @examples
#' set.seed(1984)
#' XX = matrix(rnorm(40), ncol = 2)
#' YY = matrix(runif(length(XX)*2), ncol = ncol(XX))
#' knns_of_XX_in_XX = search_knn(XX, 1)
#' knns_of_YY_in_XX = search_knn(XX, 1, query = YY)
#' plot(rbind(XX,YY), type = "n", xlab = "", ylab ="")
#' points(XX, pch = 19, cex = 2, xlab = "", ylab = "")
#' arrows(XX[, 1],XX[, 2], 
#'        XX[knns_of_XX_in_XX, 1], XX[knns_of_XX_in_XX, 2], lwd = 2)
#' points(YY, pch = 15, col = 2)
#' arrows(YY[, 1], YY[, 2], 
#'        XX[knns_of_YY_in_XX, 1], XX[knns_of_YY_in_XX, 2], col = 2)
#' legend("left", c("X", "Y"), lty=1, pch = c(19, 15), cex = c(2,1), col = c(1,2))
#' 

search_knn <- function(data, k = 1, query = NULL, 
                       method = c("FNN", "RANN", "yaImpute"), ...) {
  
  kk <- k
  method <- match.arg(method)
  
  switch(method,
         FNN = {
           if (is.null(query)) {
             out <- get.knn(data, kk, ...)$nn.index
           } else {
             out <- get.knnx(data, query, kk, ...)$nn.index
           }
         },
         RANN = {
           if (is.null(query)) {
             out <- knn.index(data, kk, "kd_tree", ...)
           } else {
             stop("Search for other than self knn is not implemented in 'RANN' package.")
           }
         },
         yaImpute = {
           if (is.null(query)) {
             out <- ann(ref = data, target = data, tree.type = "kd", k = kk + 1, 
                        verbose = FALSE, eps = 0, ...)$knnIndexDist[, kk + 1]
           } else {
             out <- ann(ref = data, target = query, tree.type = "kd", k = kk + 
                          1, verbose = FALSE, eps = 0, ...)$knnIndexDist[, kk + 1]
           }
         })
  return(c(out))
}

Try the LICORS package in your browser

Any scripts or data that you put into this service are public.

LICORS documentation built on May 29, 2017, 1:02 p.m.