`data2LCs`

gets all PLC or FLC configuration from a
*(N+1)D* field given the LC template. The shape and
dimension of this LC template depends on coordinates
passed on by `setup_LC_geometry`

.

Since `data2LCs`

passes the `LC.coordinates`

array to `get_LC_config`

to iterate over the
entire dataset, this functional programming approach
allows user-defined light cone shapes (independent of the
shapes implemented by `setup_LC_geometry`

).

Just replace the `$coordinates`

from the `"LC"`

class with a user-specified LC template.

1 |

`field` |
spatio-temporal field; either a matrix or a
3-dimensional array with time |

`LC.coordinates` |
coordinates for LC shape and
dimension (usually the |

`compute_LC_coordinates`

,
`setup_LC_geometry`

1 2 3 4 5 6 7 8 9 10 11 12 13 14 | ```
set.seed(1)
AA <- matrix(rnorm(200), ncol = 10)
LC_geom <- setup_LC_geometry(speed = 1, horizon = list(PLC = 2, FLC = 0), shape = "cone")
bb <- data2LCs(t(AA), LC.coordinates = LC_geom$coordinates)
image2(bb$PLC)
plot(density(bb$FLC))
# a time series example
data(nottem)
xx <- nottem
LC_geom <- setup_LC_geometry(speed = 1, horizon = list(PLC = 24, FLC = 3), space.dim = 0)
bb <- data2LCs(xx, LC.coordinates = LC_geom$coordinates)
image2(bb$PLC)
plot(density(bb$FLC))
``` |

Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

All documentation is copyright its authors; we didn't write any of that.