Description Usage Arguments Value See Also Examples
Standard utility to perform nonlinear PSD fit
1 | standardfit(d, r, hist, trace, iter, plotqq, weights, merge_tails)
|
d |
A PSD S3 object representing initial guess of the PSD parameters |
r |
Input log-return series |
hist |
Input histogram |
trace |
TRUE/FALSE: turn trace on/off |
iter |
Maximum number of iterations |
plotqq |
TRUE/FALSE: Plot intermediate charts oor not |
weights |
Specify the weights of each component in the nonlinear fit, defaults are 1. |
merge_tails |
Specify the numbers of data points to merge in both tails when processing histogram |
dist |
A PSD S3 object representing best nonlinear fit |
psdout |
The output of optmix/psg function. This is for debugging purpose only. |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | # Load the daily log-return data of DJIA
data(szd_logr)
# Prepare the input data set
merge_tails <- c(1,3)
dt <- LIHNPSD_prepare_data(szd_logr, breaks=68, merge_tails=merge_tails)
# Prepare the input PSD
dist <- list( sigma= 0.0036, alpha= 0.9, gamma= 0.0, beta= -0.014 )
class(dist) <- "LIHNPSD"
dist <- rawmean(dist)
dist$location <- 0.00014
# Invoke the nonlinear fit (This will take some time!)
#fit <- standardfit(dist, dt$logr, dt$h, trace=1, iter=10,
# plotqq=1, weights=list(m3=5,m4=1,qq_df=4), merge_tails=merge_tails )
# The final PSD
#dist <- fit$dist
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.