Nothing
#' @importFrom parallel mclapply
#' @importFrom stats as.dist as.formula cutree dlnorm formula hclust lowess median model.matrix na.omit optim pgamma plnorm pnorm predict qnorm runif sd supsmu var wilcox.test
generic.impute.ltrcrfsrc <- function(data,
ntree = 250,
nodesize = NULL,
nsplit = 1,
nimpute = 1,
fast = FALSE,
...)
{
## save the row and column names: later we will check if any rows or columns
## were deleted as part of the missing data preprocessing
c.names <- colnames(data)
r.names <- rownames(data)
## acquire the permissible hidden options
dots <- list(...)
dots$na.action <- dots$impute.only <- dots$forest <- NULL
## rfsrc grow call
if (!fast) {
object <- do.call("ltrcrfsrc",
c(list(data = data,
ntree = ntree,
nodesize = nodesize,
nsplit = nsplit,
nimpute = nimpute,
na.action = "na.impute",
impute.only = TRUE,
forest = FALSE), dots))
}
else {## user has requested the fast forest interface
object <- do.call("ltrcrfsrc.fast",
c(list(data = data,
ntree = ntree,
nodesize = nodesize,
nsplit = nsplit,
nimpute = nimpute,
na.action = "na.impute",
impute.only = TRUE), dots))
}
## confirm that no error has occured
if (is.null(object)) {
return(NULL)
}
## the data is no longer needed
rm(data)
## if the return object is a data frame then imputation was not
## performed: for example, there was no missing data either before
## or after processing
if (is.data.frame(object)) {
return(invisible(list(data = object, missing = row.col.deleted(object, r.names, c.names))))
}
## preliminary results of imputation
if(is.null(object$yvar.names)) {
imputed.result <- object$xvar
}
else {
imputed.result <- cbind(object$yvar, object$xvar)
}
colnames(imputed.result) <- c(object$yvar.names, object$xvar.names)
## overlay the data (only necessary when nimpute = 1)
if (nimpute == 1) {
imputed.result[object$imputed.indv, ] <- object$imputed.data
}
## the object is no longer required
rm(object)
## return the goodies
invisible(list(data = imputed.result, missing = row.col.deleted(imputed.result, r.names, c.names)))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.