Nothing
#' Plot of the Crown Base Height (CBH) based on the breaking point method
#' @description This function plots the crown base height (CBH) based on breaking point over the cummulative LAD values and gives the LAD percentage
#' of the canopy layer
#' @usage get_plots_cbh_bp(LAD_profiles, cummulative_LAD, min_height = 1.5)
#' @param LAD_profiles original tree Leaf Area Density (LAD) profile (output of [lad.profile()] function from leafR package).
#' An object of the class text.
#' @param cummulative_LAD tree metrics derived from using breaking points on cummulative LAD (output of [get_cum_break()] function).
#' An object of the class text.
#' @param min_height Numeric value for the actual minimum base height (in meters).
#' @return A plot of the Crown Base Height (CBH) based on the breaking point method and Leaf Area Density (LAD) percentage of the canopy layer.
#' @author Olga Viedma, Carlos Silva, JM Moreno and A.T. Hudak
#'
#' @examples
#' library(ggplot2)
#' library(dplyr)
#'
#' # LAD profiles derived from normalized ALS data after applying [lad.profile()] function
#' LAD_profiles <- read.table(system.file("extdata", "LAD_profiles.txt", package = "LadderFuelsR"),
#' header = TRUE)
#' LAD_profiles$treeID <- factor(LAD_profiles$treeID)
#'
#' # Before running this example, make sure to run get_cum_break().
#' if (interactive()) {
#' cummulative_LAD <- get_cum_break()
#' LadderFuelsR::cummulative_LAD$treeID <- factor(LadderFuelsR::cummulative_LAD$treeID)
#'
#' # Generate cumulative LAD plots
#' plots_cbh_bp <- get_plots_cbh_bp(LAD_profiles, cummulative_LAD,min_height = 1.5)
#' }
#' @importFrom dplyr select_if group_by summarise summarize mutate arrange rename rename_with filter slice slice_tail ungroup distinct
#' across matches row_number all_of vars bind_cols case_when left_join mutate if_else lag n_distinct
#' @importFrom segmented segmented seg.control
#' @importFrom magrittr %>%
#' @importFrom stats ave dist lm na.omit predict quantile setNames smooth.spline
#' @importFrom utils tail
#' @importFrom tidyselect starts_with everything one_of
#' @importFrom stringr str_extract str_match str_detect str_remove_all
#' @importFrom tibble tibble
#' @importFrom tidyr pivot_longer fill pivot_wider replace_na
#' @importFrom gdata startsWith
#' @importFrom ggplot2 aes geom_line geom_path geom_point geom_polygon geom_text geom_vline ggtitle coord_flip theme_bw
#' theme element_text xlab ylab ggplot xlim
#' @seealso \code{\link{get_cum_break}}
#' @export
get_plots_cbh_bp <- function(LAD_profiles, cummulative_LAD,min_height = 1.5) {
df_orig<- LAD_profiles
if(min_height==0){
min_height <-0.5
# Ensure the column starts with a negative value
if (df_orig$height[1] < min_height) {
# Calculate the shift value
shift_value <- abs(df_orig$height[1])
# Adjust the column to start from 0
df_orig$height <- df_orig$height + shift_value
}
# Ensure the column starts with a negative value
if (df_orig$height[1] > min_height) {
# Calculate the shift value
shift_value1 <- abs(df_orig$height[1])
# Adjust the column to start from 0
df_orig$height <- df_orig$height - shift_value1
}
}
df_effective1 <- cummulative_LAD
# Ensure treeID columns are factors
df_orig$treeID <- factor(df_orig$treeID)
df_effective1$treeID <- factor(df_effective1$treeID)
treeID<-factor(df_orig$treeID)
#Remove duplicates and columns with all NA values
df_effective1 <- df_effective1 %>% dplyr::distinct(treeID, .keep_all = TRUE)
df_effective1 <- df_effective1[, !apply(is.na(df_effective1), 2, all)]
trees_name1<- as.character(df_effective1$treeID)
trees_name2<- factor(unique(trees_name1))
plot_with_annotations_list <- list()
for (i in levels(trees_name2)) {
tree_data <- df_orig %>%
dplyr::filter(treeID == i) %>%
dplyr::mutate(lad = as.numeric(lad)) %>%
dplyr::filter(!is.na(lad))
height <- tree_data$height
lad <- tree_data$lad
df_effective1 <- df_effective1 %>% dplyr::filter(treeID == i)
# Convert and round necessary columns
bp_CBH <- round(as.numeric(as.character(df_effective1$bp_Hcbh)), 1)
bp_Hdepth <- as.numeric(as.character(df_effective1$bp_Hdptf))
bp1_CBH <- round(as.numeric(as.character(df_effective1$Hcbh_brpt)), 1)
below_brpt <- round(as.numeric(as.character(df_effective1$below_hcbhbp)), 1)
above_brpt <- round(as.numeric(as.character(df_effective1$above_hcbhbp)), 1)
min_y <- min(tree_data$lad, na.rm = TRUE)
max_y <- max(tree_data$lad, na.rm = TRUE)
x <- tree_data$height
y <- tree_data$lad
tryCatch({
bp2 <- ggplot(tree_data, aes(x = height)) +
geom_line(aes(y = lad), color = "black", linewidth = 0.5) +
geom_point(data = tree_data, aes(x = height, y = lad), color = "black", size = 1.5) +
xlim(min(x), max(tree_data$height, na.rm = TRUE)) # Set x-axis limits
if (!is.na(min_y) && !is.na(max_y)) {
tryCatch({
if (!any(is.na(bp_CBH)) && !any(is.na(bp_Hdepth))) {
if (bp_CBH != bp_Hdepth) {
polygon_data_1 <- data.frame(x = c(bp_CBH, bp_CBH, bp_Hdepth, bp_Hdepth),
y = c(min_y, max_y, max_y, min_y))
bp2 <- bp2 +
geom_polygon(data = polygon_data_1,
aes(x = x, y = y), fill = "dark green", alpha = 0.3)
} else {
line_data_1 <- data.frame(x = c(bp_CBH, bp1_CBH, bp_Hdepth),
y = c(min_y, max_y))
bp2 <- bp2 +
geom_path(data = line_data_1,
aes(x = x, y = y), color = "dark green", size = 1, linetype = "solid")
}
}
}, error = function(e) {})
bp2 <- bp2 +
theme_bw() +
theme(
axis.text.x = element_text(angle = 0, vjust = 0.5, hjust = 1, color = "black", size = 14, family = "sans"),
axis.text.y = element_text(angle = 0, vjust = 0.5, hjust = 1, color = "black", size = 14, family = "sans"),
axis.title.x = element_text(size = 14, family = "sans", color = "black", face = "bold"),
axis.title.y = element_text(size = 14, family = "sans", color = "black", face = "bold")) +
xlab("Height") +
ylab("LAD") +
ggtitle(paste0("tree_", i)) +
coord_flip()
# Create the labels
Hcbh1_Hdptf1 <- as.numeric(as.character(df_effective1$bp_lad))
label_Hcbh1_Hdptf1 <- round(Hcbh1_Hdptf1, 1)
Hcbh1_Hdptf1a <- paste0(as.character(label_Hcbh1_Hdptf1), "", "%")
lad_brpt1 <- as.numeric(as.character(df_effective1$below_hcbhbp))
label_lad_brpt <- round(lad_brpt1, 1)
label_lad_brpt1 <- paste0(as.character(label_lad_brpt), "", "%")
lad_brpt2 <- as.numeric(as.character(df_effective1$above_hcbhbp))
label_lad_brp2 <- round(lad_brpt2, 1)
label_lad_brpt2a <- paste0(as.character(label_lad_brp2), "", "%")
CBH1_label <- paste0("CBH = ", bp_CBH, "m")
CBHbp_label <- paste0("CBH_bp = ", bp1_CBH, "m")
Depth1_label <- paste0("Depth = ", bp_Hdepth, "m")
bp2_annotations <- bp2
# Add the annotations for bp1_CBH and corresponding label
if (any(!is.na(bp_CBH)) && any(!is.na(Hcbh1_Hdptf1a))) {
y_1 = min_y
bp2_annotations <- bp2_annotations + geom_text(data = data.frame(bp_CBH = bp_CBH, y_1 = min_y, Hcbh1_Hdptf1a = Hcbh1_Hdptf1a),
aes(x = bp_CBH, y = y_1, label = Hcbh1_Hdptf1a),
color = "black", hjust = -2.5, vjust = 0, size = 5)
y_1 = max_y
bp2_annotations <- bp2_annotations + geom_text(data = data.frame(bp_CBH = bp_CBH, y_1 = max_y, CBH1_label = CBH1_label),
aes(x = bp_CBH, y = y_1, label = CBH1_label),
color = "black", hjust = 1, vjust = 0, size = 5)
y_1 = max_y
bp2_annotations <- bp2_annotations + geom_text(data = data.frame(bp_Hdepth = bp_Hdepth, y_1 = max_y, Depth1_label = Depth1_label),
aes(x = bp_Hdepth, y = y_1, label = Depth1_label),
color = "black", hjust = 2, vjust = 1, size = 5)
}
if (any(!is.na(bp_CBH)) && any(!is.na(bp1_CBH)) && any(!is.na(below_brpt)) && any(!is.na(above_brpt)) && any(!is.na(Hcbh1_Hdptf1a))) {
# Add line for bp1_CBH
bp2_annotations <- bp2_annotations + geom_vline(xintercept = bp1_CBH, color = "blue", linetype = "dashed", size = 1) +
geom_text(aes(x = bp1_CBH, y = max_y, label = CBHbp_label), color = "blue", hjust = 2.5, vjust = -1, size = 5) +
geom_text(aes(x = bp1_CBH, y = max_y, label = label_lad_brpt1), color = "blue", hjust = 2.5, vjust = 2, size = 5)+
geom_text(aes(x = bp1_CBH, y = max_y, label = label_lad_brpt2a), color = "blue", hjust = 2.5, vjust = -1.5, size = 5)
}
plot_with_annotations_list[[i]] <- bp2_annotations # Store plot with annotations separately
#print(paste("Plot for tree ", i, " created successfully"))
}
}, error = function(e) {
#print(paste("Error occurred for tree:", i))
#print(e)
})
}
return(plot_with_annotations_list) # Changed from plot_with_annotations_list to plot_list
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.