LambertW-toolkit | R Documentation |
\times
F distributionIMPORTANT: This toolkit functionality is still under active development; function names, arguments, return values, etc. may change.
This do-it-yourself Lambert W \times
F toolkit implements the flexible
input/output framework of Lambert W \times
F random variables (see
References). Using a modular approach, it allows users to create their
own Lambert W \times
'MyFavoriteDistribution' RVs. See Details
below.
If the distribution you inted to use is not already implemented
(get_distnames
), then you can create it:
use create_LambertW_input
with your
favorite distribution,
pass it as an input argument to create_LambertW_output
,
use Rs standard functionality for distributions
such as random number generation (rY
), pdf (dY
) and cdf
(pY
), quantile function (qY
), etc. for this newly generated
Lambert W \times
'MyFavoriteDistribution'.
create_LambertW_output
converts the input LambertW_input
representing random variable X \sim F_X
to the Lambert W
\times
F_X
output.
create_LambertW_input(
distname = NULL,
beta,
input.u = list(beta2tau = NULL, d = NULL, p = NULL, r = NULL, q = NULL, distname =
"MyFavoriteDistribution", is.non.negative = FALSE)
)
create_LambertW_output(
LambertW.input = NULL,
theta = NULL,
distname = LambertW.input$distname
)
distname |
character; name of input distribution; see
|
beta |
numeric vector (deprecated); parameter |
input.u |
optional; users can make their own 'Lambert W x F' distribution by supplying the necessary functions. See Description for details. |
LambertW.input |
an object of class |
theta |
list; a (possibly incomplete) list of parameters |
create_LambertW_output
takes an object of class
LambertW_input
and creates a class LambertW_output
for
standard distributions as well as the user-defined distribution. This
LambertW_output
represents the RV Y \sim
Lambert W
\times
'MyFavoriteDistribution' with all its properties and R
functionality, such as random number generation (rY
), pdf
(dY
) and cdf (pY
), etc.
create_LambertW_input
allows users to define their own Lambert
W\times
F distribution by supplying the necessary functions about
the input random variable U
and \boldsymbol \beta
. Here
U
is the zero mean and/or unit variance version of X \sim
F_X(x \mid \boldsymbol \beta)
(see References).
The argument input.u
must be a list containing all of the following:
beta2tau
R function of (beta)
: converts \boldsymbol \beta
to \tau
for the
user defined distribution
distname
optional; users can specify the name
of their input distribution. By default it's called "MyFavoriteDistribution"
.
The distribution name will be used in plots and summaries of the Lambert W\times
F
input (and output) object.
is.non.negative
logical; users should specify whether the distribution is for non-negative random variables or not. This will help for plotting and theoretical quantile computation.
d
R function of (u, beta)
: probability density function (pdf) of U,
p
R function of (u, beta)
: cumulative distribution function (cdf) of U,
q
R function of (p, beta)
: quantile function of U,
r
R function (n, beta)
: random number generator for U,
create_LambertW_output
returns a list of class LambertW_output
with values that are (for the most part) functions themselves (see Examples):
d |
pdf of Y |
p |
cdf of Y, |
q |
quantile function for Y, |
r |
random number generator for Y, |
distname |
character string with the name of the new distribution. Format: "Lambert W x 'MyFavoriteDistribution'", |
beta , theta |
see Arguments, |
distname.with.beta |
name of the new distribution
including the parameter |
Georg M. Goerg
# create a Gaussian N(1, 2) input
Gauss.input <- create_LambertW_input("normal", beta = c(1, 2))
# create a heavy-tailed version of a normal
# gamma = 0, alpha = 1 are set by default; beta comes from input
params <- list(delta = c(0.3))
LW.Gauss <- create_LambertW_output(LambertW.input = Gauss.input,
theta = params)
LW.Gauss
op <- par(no.readonly = TRUE)
par(mfrow = c(2, 1), mar = c(3, 3, 2, 1))
curve(LW.Gauss$d(x, params), -7, 10, col = "red")
# parameter will get detected automatically from the input
curve(LW.Gauss$d(x), -7, 10, col = "blue") # same in blue;
# compare to the input case (i.e. set delta = 0)
params.0 <- params
params.0$delta <- 0
# to evaluate the RV at a different parameter value,
# it is necessary to pass the new parameter
curve(LW.Gauss$d(x, params.0), -7, 10, add = TRUE, col = 1) #' par(op)
curve(LW.Gauss$p(x, params), -7, 10, col = "red")
curve(LW.Gauss$p(x, params.0), -7, 10, add = TRUE, col = 1)
test_normality(LW.Gauss$r(n = 100), add.legend = FALSE)
## generate a positively skewed version of a shifted, scaled t_3
t.input <- create_LambertW_input("t", beta = c(2, 1, 3))
t.input
params <- list(gamma = 0.05) # skew it
LW.t <- create_LambertW_output(LambertW.input = t.input, theta = params)
LW.t
plot(t.input$d, -7, 11, col = 1)
plot(LW.t$d, -7, 11, col = 2, add = TRUE)
abline(v = t.input$beta["location"], lty = 2)
# draw samples from the skewed t_3
yy <- LW.t$r(n = 100)
test_normality(yy)
### create a skewed exponential distribution
exp.input <- create_LambertW_input("exp", beta = 1)
plot(exp.input)
params <- list(gamma = 0.2)
LW.exp <- create_LambertW_output(exp.input, theta = params)
plot(LW.exp)
# create a heavy-tail exponential distribution
params <- list(delta = 0.2)
LW.exp <- create_LambertW_output(exp.input, theta = params)
plot(LW.exp)
# create a skewed chi-square distribution with 5 df
chi.input <- create_LambertW_input("chisq", beta = 5)
plot(chi.input)
params <- list(gamma = sqrt(2)*0.2)
LW.chi <- create_LambertW_output(chi.input, theta = params)
plot(LW.chi)
# a demo on how a user-defined U input needs to look like
user.tmp <- list(d = function(u, beta) dnorm(u),
r = function(n, beta) rnorm(n),
p = function(u, beta) pnorm(u),
q = function(p, beta) qnorm(p),
beta2tau = function(beta) {
c(mu_x = beta[1], sigma_x = beta[2],
gamma = 0, alpha = 1, delta = 0)
},
distname = "MyNormal",
is.non.negative = FALSE)
my.input <- create_LambertW_input(input.u = user.tmp, beta = c(0, 1))
my.input
plot(my.input)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.