Description Usage Arguments Details Value Author(s) References Examples
This function updates β for given penalty parameters.
1 | beta.update.net(x,y,beta,lambda1,lambda2,M1,n.iter,iscpp,tol)
|
x |
input data matrix of size n \times p; n - number of observations; p - number of covariates |
y |
response vector or size n \times 1 |
beta |
initial value for β; default - zero vector of size n \times 1 |
lambda1 |
lasso penalty parameter |
lambda2 |
network penalty parameter |
M1 |
penalty matrix |
n.iter |
maximum number of iterations for β step; default - 1e5 |
iscpp |
binary choice for using cpp function in coordinate updates; 1 - use C++ (default), 0 - use R |
tol |
convergence tolerance level; default - 1e-6 |
Updates the coefficient vector β given the data and penalty parameters λ1 and λ2. Convergence criterion is defined as ∑_{i=1}^p |β_{i,j} - β_{i,j-1}| ≤q to.
beta |
updated β vector |
convergence |
binary variable; 1 - yes |
steps |
number of steps until convergence |
Maintainer: Jonas Striaukas <jonas.striaukas@gmail.com>
Weber, M., Striaukas, J., Schumacher, M., Binder, H. "Network-Constrained Covariate Coefficient and Connection Sign Estimation" (2018) <doi:10.2139/ssrn.3211163>
1 2 3 4 5 6 7 8 9 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.