Description Usage Arguments Details Value Note Author(s) Source References See Also Examples
Density function, distribution function, quantile function, random number generation and hazard rate function for the new weighted Lindley distribution with parameters theta and alpha.
| 1 2 3 4 5 6 7 8 9 10 | dnwlindley(x, theta, alpha, log = FALSE)
pnwlindley(q, theta, alpha, lower.tail = TRUE, log.p = FALSE)
qnwlindley(p, theta, alpha, lower.tail = TRUE, log.p = FALSE, L = 1e-04,
  U = 50)
rnwlindley(n, theta, alpha, L = 1e-04, U = 50)
hnwlindley(x, theta, alpha, log = FALSE)
 | 
| x, q | vector of positive quantiles. | 
| theta, alpha | positive parameters. | 
| log, log.p | logical; If TRUE, probabilities p are given as log(p). | 
| lower.tail | logical; If TRUE, (default), P(X ≤q x) are returned, otherwise P(X > x). | 
| p | vector of probabilities. | 
| L, U | interval which  | 
| n | number of observations. If  | 
Probability density function
f(x\mid θ,α )={\frac{{θ }^{2}≤ft( 1+α \right) ^{2}}{α ≤ft( α θ +α +θ +2\right) }}≤ft( 1+x\right) ≤ft( 1-e{^{-θ α x}}\right) e{^{-θ x}}
Cumulative distribution function
F(x\mid θ,α )=1-{\frac{≤ft( 1+α \right) ^{2}≤ft( θ x+θ +1\right) e{^{-θ x}}}{α ≤ft( α θ +α +θ +2\right) }}+{\frac{≤ft( θ α x+α θ +θ x+θ +1\right) e{^{-θ x}}e{^{-θ α x}}}{α ≤ft(α θ +α +θ +2\right) }}
Quantile function
\code{does not have a closed mathematical expression}
Hazard rate function
h(x\mid θ,α )=\frac{{θ }^{2}≤ft( 1+α \right) ^{2}≤ft( 1+x\right) ≤ft( 1-e{^{-θ α x}}\right) e{^{-θ x}}}{≤ft( 1+α \right) ^{2}≤ft( θ x+θ +1\right) e{^{-θ x}-}≤ft( θ α x+α θ +θ x+θ +1\right) e{^{-θ x}}e{^{-θ α x}}}
dnwlindley gives the density, pnwlindley gives the distribution function, qnwlindley gives the quantile function, rnwlindley generates random deviates and hnwlindley gives the hazard rate function.
Invalid arguments will return an error message.
The uniroot function with default arguments is used to find out the quantiles.
Josmar Mazucheli jmazucheli@gmail.com
Larissa B. Fernandes lbf.estatistica@gmail.com
[d-h-p-q-r]nwlindley are calculated directly from the definitions. rnwlindley uses the quantile function.
Asgharzadeh, A., Bakouch, H. S., Nadarajah, S., Sharafi, F., (2016). A new weighted Lindley distribution with application. Brazilian Journal of Probability and Statistics, 30, 1-27.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | set.seed(1)
x <- rnwlindley(n = 1000, theta = 1.5, alpha = 1.5)
R <- range(x)
S <- seq(from = R[1], to = R[2], by = 0.1)
plot(S, dnwlindley(S, theta = 1.5, alpha = 1.5), xlab = 'x', ylab = 'pdf')
hist(x, prob = TRUE, main = '', add = TRUE)
p <- seq(from = 0.1, to = 0.9, by = 0.1)
q <- quantile(x, prob = p)
pnwlindley(q, theta = 1.5, alpha = 1.5, lower.tail = TRUE)
pnwlindley(q, theta = 1.5, alpha = 1.5, lower.tail = FALSE)
qnwlindley(p, theta = 1.5, alpha = 1.5, lower.tail = TRUE)
qnwlindley(p, theta = 1.5, alpha = 1.5, lower.tail = FALSE)
library(fitdistrplus)
fit <- fitdist(x, 'nwlindley', start = list(theta = 1.5, alpha = 1.5))
plot(fit)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.