Description Usage Arguments Details Value Author(s) Source References See Also Examples
Density function, distribution function, quantile function, random number generation and hazard rate function for the Lindley exponential distribution with parameters theta and alpha.
1 2 3 4 5 6 7 8 9 |
x, q |
vector of positive quantiles. |
theta, alpha |
positive parameters. |
log, log.p |
logical; If TRUE, probabilities p are given as log(p). |
lower.tail |
logical; If TRUE, (default), P(X ≤q x) are returned, otherwise P(X > x). |
p |
vector of probabilities. |
n |
number of observations. If |
Probability density function
f(x\mid θ ,α )={\frac{{θ }^{2}α {{e}^{-α x}}≤ft(1-{{e}^{-α x}}\right) ^{θ -1}≤ft[ 1-\log ≤ft( 1-{{e}^{-α x}}\right) \right] }{1+θ }}
Cumulative distribution function
F(x\mid θ ,α )={\frac{≤ft( 1-{{e}^{-α x}}\right) ^{θ }≤ft[ 1+θ -θ \log ≤ft( 1-{{e}^{-α x}}\right) \right] }{1+θ }}
Quantile function
\code{see Bhati et al., 2015}
Hazard rate function
\code{see Bhati et al., 2015}
dlindleye gives the density, plindleye gives the distribution function, qlindleye gives the quantile function, rlindleye generates random deviates and hlindleye gives the hazard rate function.
Invalid arguments will return an error message.
Josmar Mazucheli jmazucheli@gmail.com
Larissa B. Fernandes lbf.estatistica@gmail.com
[d-h-p-q-r]lindleye are calculated directly from the definitions. rlindleye uses the quantile function.
Bhati, D., Malik, M. A., Vaman, H. J., (2015). Lindley-Exponential distribution: properties and applications. METRON, 73, (3), 335–357.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | set.seed(1)
x <- rlindleye(n = 1000, theta = 5.0, alpha = 0.2)
R <- range(x)
S <- seq(from = R[1], to = R[2], by = 0.1)
plot(S, dlindleye(S, theta = 5.0, alpha = 0.2), xlab = 'x', ylab = 'pdf')
hist(x, prob = TRUE, main = '', add = TRUE)
p <- seq(from = 0.1, to = 0.9, by = 0.1)
q <- quantile(x, prob = p)
plindleye(q, theta = 5.0, alpha = 0.2, lower.tail = TRUE)
plindleye(q, theta = 5.0, alpha = 0.2, lower.tail = FALSE)
qlindleye(p, theta = 5.0, alpha = 0.2, lower.tail = TRUE)
qlindleye(p, theta = 5.0, alpha = 0.2, lower.tail = FALSE)
## waiting times data (from Ghitany et al., 2008)
data(waitingtimes)
library(fitdistrplus)
fit <- fitdist(waitingtimes, 'lindleye', start = list(theta = 2.6, alpha = 0.15),
lower = c(0.01, 0.01))
plot(fit)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.