Nothing
## load data
data(ExampleData.DeValues, envir = environment())
test_that("input validation", {
testthat::skip_on_cran()
data <- ExampleData.DeValues$CA1
expect_error(calc_AverageDose(),
"'data' should be of class 'RLum.Results' or 'data.frame'")
expect_error(calc_AverageDose("test"),
"'data' should be of class 'RLum.Results' or 'data.frame'")
expect_error(calc_AverageDose(data),
"\"sigma_m\" is missing, with no default")
expect_error(calc_AverageDose(data, sigma_m = NULL),
"'sigma_m' should be a positive scalar")
expect_error(calc_AverageDose(data, sigma_m = 0.1, Nb_BE = NULL),
"'Nb_BE' should be a positive integer scalar")
expect_message(expect_null(
calc_AverageDose(data[, 1, drop = FALSE], sigma_m = 0.1)),
"Error: 'data' contains < 2 columns")
expect_message(expect_null(
calc_AverageDose(data[0, ], sigma_m = 0.1)),
"Error: 'data' contains no data, NULL returned")
SW({
expect_warning(calc_AverageDose(cbind(data, data), sigma_m = 0.1),
"'data' contains > 2 columns")
expect_warning(calc_AverageDose(rbind(data, NA), sigma_m = 0.1),
"NA values in 'data' detected")
expect_message(expect_null(
calc_AverageDose(data.frame(NA, NA), sigma_m = 0.1)),
"Error: After NA removal, nothing is left from the data set")
})
})
test_that("check class and length of output", {
testthat::skip_on_cran()
set.seed(1)
expect_snapshot_RLum(
temp <- calc_AverageDose(ExampleData.DeValues$CA1[1:56, ],
sigma_m = 0.1,
plot = FALSE,
verbose = FALSE),
tolerance = 1.5e-6)
expect_output(
calc_AverageDose(ExampleData.DeValues$CA1[1:56, ],
sigma_m = 0.9,
plot = FALSE,
verbose = TRUE)
)
expect_s4_class(temp, "RLum.Results")
expect_equal(length(temp), 3)
results <- get_RLum(temp)
expect_equal(round(results$AVERAGE_DOSE, digits = 4), 65.3597)
expect_equal(round(results$SIGMA_D, digits = 4), 0.3092)
expect_equal(round(results$L_MAX, digits = 5), -19.25096)
## RLum.Results
expect_warning(calc_AverageDose(temp, sigma_m = 0.1, verbose = FALSE, col = 1),
"'data' contains > 2 columns, only the first 2 columns were used")
## non-positive values
data.zero <- ExampleData.DeValues$CA1
data.zero[1, 1] <- 0
expect_warning(calc_AverageDose(data.zero, sigma_m = 0.1, verbose = FALSE),
"Non-positive values in 'data' detected, rows removed")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.