Description Usage Arguments Value Note See Also Examples
MCMC runs of posterior distribution of data with parameters of Generalized Extreme Value (GEV)
density, with parameters mu, sigma and xi.
1 |
X
data |
data vector |
block |
the block size. A numeric value is interpreted as the number of data values in each successive block. All the data is used, so the last block may not contain block observations |
int |
Number of iteractions selected in MCMC. The program selects 1 in each 10
iteraction, then |
An object of class gevp that gives a list containing the points of posterior distributions of mu, sigma and xi of the gev distribution, the data, mean posterior, median posterior and the credibility interval of the parameters.
The non-informative prior distribution of these parameters
are Normal(0,1000) for the parameter mu, Gamma(0.001,0.001) for the parameter sigma
and Normal(0,100) for parameter xi. During the MCMC runs, screen shows the proportion of iteractions
made.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | # Obtaining posterior distribution of a vector of simulated points
x=rgev(300,xi=0.1,mu=10,sigma=5)
# Obtaning 600 points of posterior distribution
ajuste=gevp(x,1,200)
# Obtaining 300 points of ponterior distribution of river nidd data
## Not run: data(nidd.annual)
## Not run: out=gevp(nidd.annual,1,300)
# Vector of maxima return for each 15 days for ibovespa data
## Not run: data(ibovespa)
## Not run: postibv=gevp(ibovespa[,4],15,300)
## Not run: plot.ts(postibv$posterior)
|
Loading required package: evir
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.