Description Usage Arguments Value Note See Also Examples
MCMC runs of posterior distribution of data with parameters of Generalized Extreme Value (GEV)
density, with parameters mu
, sigma
and xi
.
1 |
X
data |
data vector |
block |
the block size. A numeric value is interpreted as the number of data values in each successive block. All the data is used, so the last block may not contain block observations |
int |
Number of iteractions selected in MCMC. The program selects 1 in each 10
iteraction, then |
An object of class gevp
that gives a list containing the points of posterior distributions of mu
, sigma
and xi
of the gev distribution, the data, mean posterior, median posterior and the credibility interval of the parameters.
The non-informative prior distribution of these parameters
are Normal(0,1000)
for the parameter mu
, Gamma(0.001,0.001)
for the parameter sigma
and Normal(0,100)
for parameter xi
. During the MCMC runs, screen shows the proportion of iteractions
made.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | # Obtaining posterior distribution of a vector of simulated points
x=rgev(300,xi=0.1,mu=10,sigma=5)
# Obtaning 600 points of posterior distribution
ajuste=gevp(x,1,200)
# Obtaining 300 points of ponterior distribution of river nidd data
## Not run: data(nidd.annual)
## Not run: out=gevp(nidd.annual,1,300)
# Vector of maxima return for each 15 days for ibovespa data
## Not run: data(ibovespa)
## Not run: postibv=gevp(ibovespa[,4],15,300)
## Not run: plot.ts(postibv$posterior)
|
Loading required package: evir
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.