Description Usage Arguments Value Note References See Also Examples
MCMC runs of posterior distribution of data with parameters of Generalized Pareto Distribution
(GPD), with parameters sigma
and xi
.
1 |
data |
data vector |
threshold |
a threshold value |
int |
number of iteractions selected in MCMC. The program selects 1 in each 10
iteraction, then |
An object of class gpdp
that gives a list containing the points of posterior distributions of sigma
and xi
of the gpd distribution, the data, mean posterior, median posterior and the credibility interval of the parameters.
The joint priordistribution for these parameters is the Jeffreys prior Given as Castellanos and Cabras (2007).
Castellanos, M. A. and Cabras, S. (2007). A default Bayesian procedure for the generalized Pareto distribution, Journal of Statistical Planning and Inference, 137, 473-483.
1 2 3 4 5 6 7 8 9 10 | # Obtaining posterior distribution of a vector of simulated points
x=rgpd(300,xi=0.1,mu=9,beta=2) # in this case beta is the scale parameter sigma
# Obtaning 1000 points of posterior distribution
ajuste=gpdp(x,9, 200)
# Histogram of posterior distribution of the parameters,with 95% credibility intervals
# Danish data for evir package, modelling losses over 10
## Not run data(danish)
## Not run out=gpdp(danish,10,300)
|
Loading required package: evir
[1] 0.03333333
[1] 0.06666667
[1] 0.1
[1] 0.1333333
[1] 0.1666667
[1] 0.2
[1] 0.2333333
[1] 0.2666667
[1] 0.3
[1] 0.3333333
[1] 0.3666667
[1] 0.4
[1] 0.4333333
[1] 0.4666667
[1] 0.5
[1] 0.5333333
[1] 0.5666667
[1] 0.6
[1] 0.6333333
[1] 0.6666667
[1] 0.7
[1] 0.7333333
[1] 0.7666667
[1] 0.8
[1] 0.8333333
[1] 0.8666667
[1] 0.9
[1] 0.9333333
[1] 0.9666667
[1] 1
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.