Description Usage Arguments Value Note See Also Examples
MCMC runs of posterior distribution of data with parameters of Generalized Extreme Value (GEV)
density, in the particular case where xi=0
with parameters mu
, sigma
.
1 |
data |
data vector |
block |
the block size. A numeric value is interpreted as the number of data values in each successive block. All the data is used, so the last block may not contain block observations. |
int |
number of iteractions selected in MCMC. The program selects 1 in each 10
iteraction, then |
An object of class gumbelp
that gives a list containing the points of posterior distributions of mu
and sigma
of the gev distribution, the data, mean posterior, median posterior and the credibility interval of the parameters.
The non-informative prior distribution of these parameters are Normal(0,1000)
for the
parameter mu
and Gamma(0.001,0.001)
for the parameter sigma
. During the MCMC runs, screen
shows the proportion of iteractions made.
1 2 3 4 5 6 7 8 9 10 11 12 | # Obtaining posterior distribution of a vector of simulated points
x=rgev(200,xi=0.0001,mu=10,sigma=5)
# Obtaning 600 points of posterior distribution
ajuste=gumbelp(x,1,600)
# Maxima of each month in river nidd data
## Not run: data(nidd.annual)
## Not run: out=gumbelp(nidd.annual,1,500)
# Predictive distribution for 15 day maxima ibovespa returns
## Not run: data(ibovespa)
## Not run: postibv=gumbelp(ibovespa[,4],15,500)
|
Loading required package: evir
[1] 0.01111111
[1] 0.02222222
[1] 0.03333333
[1] 0.04444444
[1] 0.05555556
[1] 0.06666667
[1] 0.07777778
[1] 0.08888889
[1] 0.1
[1] 0.1111111
[1] 0.1222222
[1] 0.1333333
[1] 0.1444444
[1] 0.1555556
[1] 0.1666667
[1] 0.1777778
[1] 0.1888889
[1] 0.2
[1] 0.2111111
[1] 0.2222222
[1] 0.2333333
[1] 0.2444444
[1] 0.2555556
[1] 0.2666667
[1] 0.2777778
[1] 0.2888889
[1] 0.3
[1] 0.3111111
[1] 0.3222222
[1] 0.3333333
[1] 0.3444444
[1] 0.3555556
[1] 0.3666667
[1] 0.3777778
[1] 0.3888889
[1] 0.4
[1] 0.4111111
[1] 0.4222222
[1] 0.4333333
[1] 0.4444444
[1] 0.4555556
[1] 0.4666667
[1] 0.4777778
[1] 0.4888889
[1] 0.5
[1] 0.5111111
[1] 0.5222222
[1] 0.5333333
[1] 0.5444444
[1] 0.5555556
[1] 0.5666667
[1] 0.5777778
[1] 0.5888889
[1] 0.6
[1] 0.6111111
[1] 0.6222222
[1] 0.6333333
[1] 0.6444444
[1] 0.6555556
[1] 0.6666667
[1] 0.6777778
[1] 0.6888889
[1] 0.7
[1] 0.7111111
[1] 0.7222222
[1] 0.7333333
[1] 0.7444444
[1] 0.7555556
[1] 0.7666667
[1] 0.7777778
[1] 0.7888889
[1] 0.8
[1] 0.8111111
[1] 0.8222222
[1] 0.8333333
[1] 0.8444444
[1] 0.8555556
[1] 0.8666667
[1] 0.8777778
[1] 0.8888889
[1] 0.9
[1] 0.9111111
[1] 0.9222222
[1] 0.9333333
[1] 0.9444444
[1] 0.9555556
[1] 0.9666667
[1] 0.9777778
[1] 0.9888889
[1] 1
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.