FPC_basis_expansion | R Documentation |
For a function f(t), t\in\Omega
, and a basis function sequence \{\rho_k\}_{k\in\kappa}
,
basis expansion is to compute \int_\Omega f(t)\rho_k(t) dt
.
Here we do basis expansion for all f_i(t), t\in\Omega = [t_0,t_0+T]
in functional variable data, i=1,\dots,n
.
We compute a matrix (b_{ik})_{n\times p}
, where b_{ik} = \int_\Omega f(t)\rho_k(t) dt
.
The basis we use here is the functional principal component (FPC) basis induced by
the covariance function of the functional variable.
Suppose K(s,t)\in L^2(\Omega\times \Omega)
, f(t)\in L^2(\Omega)
.
Then K
induces an linear operator \mathcal{K}
by
(\mathcal{K}f)(x) = \int_{\Omega} K(t,x)f(t)dt
If \xi(\cdot)\in L^2(\Omega)
such that
\mathcal{K}\xi = \lambda \xi
where \lambda\in {C}
,
we call \xi
an eigenfunction/eigenvector of
\mathcal{K}
, and \lambda
an eigenvalue associated with \xi
.
For a stochastic process \{X(t),t\in\Omega\}
we call the orthogonal basis \{\xi_k\}_{k=1}^\infty
corresponding to eigenvalues \{\lambda_k\}_{k=1}^\infty
(\lambda_1\geq\lambda_2\geq\dots
),
induced by
K(s,t)=\text{Cov}(X(t),X(s))
a functional principal component (FPC) basis for L^2(\Omega)
.
FPC_basis_expansion(object, npc)
## S4 method for signature 'functional_variable,integer'
FPC_basis_expansion(object, npc)
object |
a |
npc |
The number of functional principal components. See |
Returns a numeric matrix, (b_{ik})_{n\times p}
,
with an extra attribute numeric_basis
, which represents the FPC basis.
The attribute numeric_basis
is a numeric_basis
object. See numeric_basis
.
The slot basis_function
is also a numeric matrix, denoted as (\zeta_{jk})_{m\times p}
b_{ik} = \int_\Omega f(t)\xi_k(t) dt
\zeta_{jk} = \xi_k(t_j)
Heyang Ji
n<-50; ti<-seq(0,1,length.out=101)
X<-t(sin(2*pi*ti)%*%t(rnorm(n,0,1)))
object = functional_variable(X = X, t_0 = 0, period = 1, t_points = ti)
a = FPC_basis_expansion(object,3L)
dim(a)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.