ME.fcLR_IV: Bias correction method of applying linear regression to one...

View source: R/ME.fcLR_IV.R

ME.fcLR_IVR Documentation

Bias correction method of applying linear regression to one functional covariate with measurement error using instrumental variable.

Description

See detailed model in reference

Usage

ME.fcLR_IV(
  data.Y,
  data.W,
  data.M,
  t_interval = c(0, 1),
  t_points = NULL,
  CI.bootstrap = FALSE
)

Arguments

data.Y

Response variable, can be an atomic vector, a one-column matrix or data frame, recommended form is a one-column data frame with column name.

data.W

A dataframe or matrix, represents W, the measurement of X. Each row represents a subject. Each column represent a measurement (time) point.

data.M

A dataframe or matrix, represents M, the instrumental variable. Each row represents a subject. Each column represent a measurement (time) point.

t_interval

A 2-element vector, represents an interval, means the domain of the functional covariate. Default is c(0,1), represent interval [0,1].

t_points

Sequence of the measurement (time) points, default is NULL.

CI.bootstrap

Whether to return the confidence using bootstrap method. Default is FALSE.

Value

Returns a ME.fcLR_IV class object. It is a list that contains the following elements.

beta_tW

Parameter estimates.

CI

Confidence interval, returnd only when CI.bootstrap is TRUE.

References

Tekwe, Carmen D., et al. "Instrumental variable approach to estimating the scalar‐on‐function regression model w ith measurement error with application to energy expenditure assessment in childhood obesity." Statistics in medicine 38.20 (2019): 3764-3781.

Examples

data(MECfda.data.sim.0.3)
res = ME.fcLR_IV(data.Y = MECfda.data.sim.0.3$Y,
              data.W = MECfda.data.sim.0.3$W,
              data.M = MECfda.data.sim.0.3$M)

MECfda documentation built on April 3, 2025, 10:07 p.m.