| numeric_basis_expansion | R Documentation |
For a function f(t), t\in\Omega, and a basis function sequence \{\rho_k\}_{k\in\kappa},
basis expansion is to compute \int_\Omega f(t)\rho_k(t) dt.
Here we do basis expansion for all f_i(t), t\in\Omega = [t_0,t_0+T] in functional variable data, i=1,\dots,n.
We compute a matrix (b_{ik})_{n\times p}, where b_{ik} = \int_\Omega f(t)\rho_k(t) dt.
The basis we use here is numerically represented by the value of basis functions
at some points in the domain.
numeric_basis_expansion(object, num_basis)
## S4 method for signature 'functional_variable,numeric_basis'
numeric_basis_expansion(object, num_basis)
object |
a |
num_basis |
a |
Returns a numeric matrix, (b_{ik})_{n\times p},
with an extra attribute numeric_basis, which is the numeric_basis object input
by the argument num_basis.
Heyang Ji
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.