numeric_basis_expansion: Numeric basis expansion for functional variable data

numeric_basis_expansionR Documentation

Numeric basis expansion for functional variable data

Description

For a function f(t), t\in\Omega, and a basis function sequence \{\rho_k\}_{k\in\kappa}, basis expansion is to compute \int_\Omega f(t)\rho_k(t) dt. Here we do basis expansion for all f_i(t), t\in\Omega = [t_0,t_0+T] in functional variable data, i=1,\dots,n. We compute a matrix (b_{ik})_{n\times p}, where b_{ik} = \int_\Omega f(t)\rho_k(t) dt. The basis we use here is numerically represented by the value of basis functions at some points in the domain.

Usage

numeric_basis_expansion(object, num_basis)

## S4 method for signature 'functional_variable,numeric_basis'
numeric_basis_expansion(object, num_basis)

Arguments

object

a functional_variable class object. The minimum and maximum of the slot t_points should be respectively equal to the slot t_0 and slot t_0 plus slot period.

num_basis

a numeric_basis class object, representing the function basis. See numeric_basis.

Value

Returns a numeric matrix, (b_{ik})_{n\times p}, with an extra attribute numeric_basis, which is the numeric_basis object input by the argument num_basis.

Author(s)

Heyang Ji


MECfda documentation built on April 3, 2025, 10:07 p.m.