bspline_basis_expansion | R Documentation |
For a function f(t), t\in\Omega
, and a basis function sequence \{\rho_k\}_{k\in\kappa}
,
basis expansion is to compute \int_\Omega f(t)\rho_k(t) dt
.
Here we do basis expansion for all f_i(t), t\in\Omega = [t_0,t_0+T]
in functional variable data, i=1,\dots,n
.
We compute a matrix (b_{ik})_{n\times p}
, where b_{ik} = \int_\Omega f(t)\rho_k(t) dt
.
The basis used here is the b-splines basis, \{B_{i,p}(x)\}_{i=-p}^{k}
, x\in[t_0,t_{k+1}]
,
where t_{k+1} = t_0+T
and B_{i,p}(x)
is defined as
B_{i,0}(x) = \left\{
\begin{aligned}
&I_{(t_i,t_{i+1}]}(x), & i = 0,1,\dots,k\\
&0, &i<0\ or\ i>k
\end{aligned}
\right.
B_{i,r}(x) = \frac{x - t_{i}}{t_{i+r}-t_{i}} B_{i,r-1}(x) + \frac{t_{i+r+1} - x}
{t_{i+r+1} - t_{i+1}}B_{i+1,r-1}(x)
bspline_basis_expansion(object, n_splines, bs_degree)
## S4 method for signature 'functional_variable,integer'
bspline_basis_expansion(object, n_splines, bs_degree)
object |
a |
n_splines |
the number of splines, equal to |
bs_degree |
the degree of the piecewise polynomial of the b-splines. See |
Returns a numeric matrix, (b_{ik})_{n\times p}
, where b_{ik} = \int_\Omega f(t)\rho_k(t) dt
.
Heyang Ji
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.