Description Usage Arguments Details Value See Also Examples
Fit the lasso path and computes the difference statistic
W_j = Z_j - \tilde{Z}_j
where Z_j and \tilde{Z}_j are the maximum values of the regularization parameter λ at which the jth variable and its knockoff enter the penalized linear regression model, respectively.
1  | MFKnockoffs.stat.lasso_lambda_difference(X, X_k, y, ...)
 | 
X | 
 original design matrix (size n-by-p)  | 
X_k | 
 knockoff matrix (size n-by-p)  | 
y | 
 response vector (length n). It should be numeric.  | 
... | 
 additional arguments specific to 'glmnet' (see Details)  | 
This function uses glmnet to compute the lasso path
on a fine grid of λ's.
The nlambda parameter can be used to control the granularity of the 
grid of λ's. The default value of nlambda is 100.
Unless a lambda sequence is provided by the user, this function generates it on a log-linear scale before calling 'glmnet' (default 'nlambda': 100).
This function is a wrapper around the more general MFKnockoffs.stat.glmnet_lambda_difference.
For a complete list of the available additional arguments, see glmnet or lars.
A vector of statistics W (length p)
Other statistics for knockoffs: MFKnockoffs.stat.forward_selection,
MFKnockoffs.stat.glmnet_coef_difference,
MFKnockoffs.stat.glmnet_lambda_difference,
MFKnockoffs.stat.lasso_coef_difference_bin,
MFKnockoffs.stat.lasso_coef_difference,
MFKnockoffs.stat.lasso_lambda_difference_bin,
MFKnockoffs.stat.random_forest,
MFKnockoffs.stat.sqrt_lasso,
MFKnockoffs.stat.stability_selection
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18  | p=100; n=200; k=15
mu = rep(0,p); Sigma = diag(p)
X = matrix(rnorm(n*p),n)
nonzero = sample(p, k)
beta = 3.5 * (1:p %in% nonzero)
y = X %*% beta + rnorm(n)
knockoffs = function(X) MFKnockoffs.create.gaussian(X, mu, Sigma)
# Basic usage with default arguments
result = MFKnockoffs.filter(X, y, knockoffs=knockoffs, 
                           statistic=MFKnockoffs.stat.lasso_lambda_difference)
print(result$selected)
# Advanced usage with custom arguments
foo = MFKnockoffs.stat.lasso_lambda_difference
k_stat = function(X, X_k, y) foo(X, X_k, y, nlambda=200)
result = MFKnockoffs.filter(X, y, knockoffs=knockoffs, statistic=k_stat)
print(result$selected)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.