Description Usage Arguments Details Value Examples
Computes the signed maximum statistic
W_j = \max(Z_j, \tilde{Z}_j) \cdot \mathrm{sgn}(Z_j - \tilde{Z}_j),
where Z_j and \tilde{Z}_j are the maximum values of λ at which the jth variable and its knockoff, respectively, enter the penalized linear regression model.
1 | MFKnockoffs.stat.lasso_lambda_signed_max(X, X_k, y, ...)
|
X |
original design matrix (size n-by-p) |
X_k |
knockoff matrix (size n-by-p) |
y |
response vector (length n). It should be numeric. |
... |
additional arguments specific to 'glmnet' or 'lars' (see Details) |
This function uses glmnet
to compute the regularization path
on a fine grid of λ's.
The additional nlambda
parameter can be used to control the granularity of the grid of λ values.
The default value of nlambda
is 100
.
Unless a lambda sequence is provided by the user, this function generates it on a log-linear scale before calling 'glmnet' (default 'nlambda': 100).
This function is a wrapper around the more general MFKnockoffs.stat.glmnet_lambda_difference.
For a complete list of the available additional arguments, see glmnet.
A vector of statistics W (length p)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | p=100; n=200; k=15
mu = rep(0,p); Sigma = diag(p)
X = matrix(rnorm(n*p),n)
nonzero = sample(p, k)
beta = 3.5 * (1:p %in% nonzero)
y = X %*% beta + rnorm(n)
knockoffs = function(X) MFKnockoffs.create.gaussian(X, mu, Sigma)
# Basic usage with default arguments
result = MFKnockoffs.filter(X, y, knockoff=knockoffs,
statistic=MFKnockoffs.stat.lasso_lambda_signed_max)
print(result$selected)
# Advanced usage with custom arguments
foo = MFKnockoffs.stat.lasso_lambda_signed_max
k_stat = function(X, X_k, y) foo(X, X_k, y, nlambda=200)
result = MFKnockoffs.filter(X, y, knockoffs=knockoffs, statistic=k_stat)
print(result$selected)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.