Description Usage Arguments Details Value See Also Examples
Computes the signed maximum statistic
W_j = \max(Z_j, \tilde{Z}_j) \cdot \mathrm{sgn}(Z_j - \tilde{Z}_j),
where Z_j and \tilde{Z}_j are the maximum values of λ at which the jth variable and its knockoff, respectively, enter the SQRT lasso model.
1 | MFKnockoffs.stat.sqrt_lasso(X, X_k, y, ...)
|
X |
original design matrix (size n-by-p) |
X_k |
knockoff matrix (size n-by-p) |
y |
response vector (length n) of numeric type |
... |
additional arguments specific to 'slim' |
With default parameters, this function uses the package flare
to run the SQRT lasso. By specifying the appropriate optional parameters,
one can use different Lasso variants including Dantzig Selector, LAD Lasso,
SQRT Lasso and Lq Lasso for estimating high dimensional sparse linear models.
For a complete list of the available additional arguments, see slim.
A vector of statistics W (length p)
Other statistics for knockoffs: MFKnockoffs.stat.forward_selection
,
MFKnockoffs.stat.glmnet_coef_difference
,
MFKnockoffs.stat.glmnet_lambda_difference
,
MFKnockoffs.stat.lasso_coef_difference_bin
,
MFKnockoffs.stat.lasso_coef_difference
,
MFKnockoffs.stat.lasso_lambda_difference_bin
,
MFKnockoffs.stat.lasso_lambda_difference
,
MFKnockoffs.stat.random_forest
,
MFKnockoffs.stat.stability_selection
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | p=50; n=50; k=10
mu = rep(0,p); Sigma = diag(p)
X = matrix(rnorm(n*p),n)
nonzero = sample(p, k)
beta = 3.5 * (1:p %in% nonzero)
y = X %*% beta + rnorm(n)
knockoffs = function(X) MFKnockoffs.create.gaussian(X, mu, Sigma)
result = MFKnockoffs.filter(X, y, knockoffs=knockoffs, statistic=MFKnockoffs.stat.sqrt_lasso)
print(result$selected)
# Advanced usage with custom arguments
foo = MFKnockoffs.stat.sqrt_lasso
k_stat = function(X, X_k, y) foo(X, X_k, y, q=0.5)
result = MFKnockoffs.filter(X, y, knockoffs=knockoffs, statistic=k_stat)
print(result$selected)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.