Roth.p.adjust: The adjusted p-values for Roth's step-up FWER controlling...

Description Usage Arguments Value Author(s) References See Also Examples

View source: R/FWERSU.R

Description

The function for calculating the adjusted p-values based on original available p-values and all attaianble p-values.

Usage

1
Roth.p.adjust(p, p.set, digits,  alpha, make.decision)

Arguments

p

numeric vector of p-values (possibly with NAs). Any other R is coerced by as.numeric. Same as in p.adjust.

p.set

a list of numeric vectors, where each vector is the vector of all attainable p-values containing the available p-value for the corresponding hypothesis..

digits

minimal number of significant digits for the adjusted p-values, the default value is 4, see print.default.

alpha

significant level used to compare with adjusted p-values to make decisions, the default value is 0.05.

make.decision

logical; if TRUE, then the output include the decision rules compared adjusted p-values with significant level α

Value

A numeric vector of the adjusted p-values (of the same length as p).

Author(s)

Yalin Zhu

References

Roth, A. J. (1999). Multiple comparison procedures for discrete test statistics. Journal of statistical planning and inference, 82: 101-117.

See Also

MHoch.p.adjust, p.adjust.

Examples

1
2
3
p <- c(pbinom(1,8,0.5),pbinom(1,5,0.75),pbinom(1,6,0.6))
p.set <-list(pbinom(0:8,8,0.5),pbinom(0:5,5,0.75),pbinom(0:6,6,0.6))
Roth.p.adjust(p,p.set,digits=5)

MHTdiscrete documentation built on Nov. 23, 2017, 9:03 a.m.