Nothing
#' @title Train a classification model using the Frank copula.
#' @param X Matrix with predictor variables.
#' @param y Numerical vector with the classes
#' to predict, y = {0,1,...,nclass}.
#' @param distribution Distribution to be used: normal or kernels,
#' by default normal.
#' @param weights Character with the weight construction method:
#' "likelihood" or "mutual_information", by default likelihood.
train.frank <- function(X, y, distribution,weights,graph_model){
nc <- length(unique(y))
est <- list()
for(c in 0:(nc-1)){
Xc <- X[y == c,]
#Estimar marginales
den_est <- density.estimation(Xc,distribution = distribution)
#Estimar copulas
est_cop <- build.weights(den_est$U, cop.est = estimation.frank,cop = "frank",
weights = weights)
#
if(graph_model == "tree"){
g <- graph_from_adjacency_matrix(adjmatrix = -1 * est_cop$w,
mode = "undirected", weighted = TRUE)
mst_result <- mst(g)
#arbol <- as_data_frame(mst_result)
arbol <- data.frame(as_edgelist(mst_result))
colnames(arbol) <- c("from","to")
#arbol <- faux(arbol = arbol, m = est_cop$w)
} else {
mst_result <- selection(f.aux2(est_cop$w))
arbol <- mst_result$table
#arbol <- faux(arbol = arbol, m = est_cop$w)
}
est[[c + 1]] <- list(den = den_est, copula = est_cop,
mst_result = mst_result, arbol = arbol,
distribution = distribution,
cop = "frank",nclass = nc)
}
return(model = est)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.