Nothing
## ----setup, include = FALSE----------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----fig.width=5,fig.height=5--------------------------------------------
library(MLeval)
## ordinary input
head(preds)
## run MLeval
test1 <- evalm(preds,plots='r',rlinethick=0.8,fsize=8,bins=8)
## ----fig.width=5,fig.height=5--------------------------------------------
test1$stdres
## ----fig.width=5,fig.height=5--------------------------------------------
test1$optres
## ----fig.width=5,fig.height=3.5------------------------------------------
test1$cc
## ----fig.width=5,fig.height=3--------------------------------------------
head(test1$probs[[1]])
## ----fig.width=5,fig.height=5--------------------------------------------
library(MLeval)
##
levels(as.factor(predsc$Group))
head(predsc)
## run MLeval
test1 <- evalm(predsc,plots='r',rlinethick=0.8,fsize=8,bins=8)
## ----fig.width=5,fig.height=5--------------------------------------------
library(MLeval)
## run cross validation on Sonar data
# fitControl <- trainControl(
# method = "repeatedcv",
# summaryFunction=twoClassSummary,
# classProbs=T,
# savePredictions = T)
# fit1 <- train(Class ~ ., data = Sonar,
# method = "ranger",
# trControl = fitControl,metric = "ROC",
# verbose = FALSE)
## evaluate
test1 <- evalm(fit1,plots='r',rlinethick=0.8,fsize=8)
## ----fig.width=5,fig.height=5--------------------------------------------
library(MLeval)
# Caret train function output object -- repeated cross validation
# run caret
# fitControl <- trainControl(
# method = "repeatedcv",
# summaryFunction=twoClassSummary,
# classProbs=T,
# savePredictions = T)
# fit2 <- train(Class ~ ., data = Sonar,
# method = "gbm",
# trControl = fitControl,metric = "ROC",
# verbose = FALSE)
# plot rocs
test4 <- evalm(list(fit1,fit2),gnames=c('ranger','gbm'),rlinethick=0.8,fsize=8,
plots='r')
## ----fig.width=5,fig.height=5--------------------------------------------
test4$optres
## ----fig.width=5,fig.height=5--------------------------------------------
library(MLeval)
# im <- twoClassSim(2000, intercept = -25, linearVars = 20)
# table(im$Class)
#
# fitControl <- trainControl(
# method = "cv",
# summaryFunction=prSummary,
# classProbs=T,
# savePredictions = T,
# verboseIter = F)
# im_fit <- train(Class ~ ., data = im,
# method = "ranger",
# metric = "AUC",
# trControl = fitControl)
x <- evalm(im_fit,rlinethick=0.8,fsize=8,plots=c())
## ----fig.width=5,fig.height=5--------------------------------------------
x$optres
## ----fig.width=5,fig.height=5--------------------------------------------
x$roc
## ----fig.width=5,fig.height=5--------------------------------------------
x$proc
## ----fig.width=5,fig.height=5--------------------------------------------
x$prg
## ----fig.width=5,fig.height=5--------------------------------------------
library(MLeval)
# # set up custom function for the log likelihood
# LLSummary <- function(data, lev = NULL, model = NULL){
# LLi <- LL(data,positive='R')
# names(LLi) <- "LL"
# out <- LLi
# out
# }
#
# fitControl <- trainControl(
# method = "cv",
# summaryFunction = LLSummary,
# classProbs=T,
# savePredictions = T,
# verboseIter = T)
# fit3 <- train(Class ~ ., data = Sonar,
# method = "ranger",
# trControl = fitControl,metric = "LL",
# verbose = FALSE)
y <- evalm(fit3,rlinethick=0.8,fsize=8,plots=c('prg'))
## ----fig.width=5,fig.height=3.5------------------------------------------
y$cc
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.