Nothing
# test_that("fine_tuning Bayesian Optimization works properly classification", {
#
# formula = "psych_well_bin ~ gender + age + socioec_status + depression"
#
# hyper_nn_tune_list = list(
# learn_rate = c(-2, -1),
# hidden_units = c(3,10)
# )
#
# set.seed(123)
#
# analysis_object <- preprocessing(df = sim_data, formula = formula, task = "classification")
#
# analysis_object <- build_model(analysis_object = analysis_object,
# model_name = "Neural Network",
# hyperparameters = hyper_nn_tune_list)
# #
# analysis_object <- fine_tuning(analysis_object = analysis_object,
# tuner = "Bayesian Optimization",
# metric = "roc_auc",
# verbose = F)
#
# fit <- analysis_object$tuner_fit
#
# expect_equal(length(fit$.iter), 8)
#
# expect_equal(fit$.predictions[[8]]$hidden_units[1], 9)
#
# expect_equal(fit$.predictions[[8]]$activation[1], "tanh")
#
# expect_equal(fit$.predictions[[8]]$.pred_High[1], 0.9140839, tolerance = 5e-2)
#
# })
#
# test_that("fine_tuning Grid Search CV works properly regression", {
#
# formula = "psych_well ~ gender + age + socioec_status + depression"
#
# hyper_nn_tune_list = list(
# learn_rate = c(-2, -1),
# hidden_units = c(3,10)
# )
#
# set.seed(123)
#
# analysis_object <- preprocessing(df = sim_data, formula = formula, task = "regression")
#
# analysis_object <- build_model(analysis_object = analysis_object,
# model_name = "Neural Network",
# hyperparameters = list(
# learn_rate = c(1e-3,1e-1),
# hidden_units = c(3,10),
# activation = "sigmoid"
# ))
#
# analysis_object <- fine_tuning(analysis_object = analysis_object,
# tuner = "Grid Search CV",
# metrics = "rmse",
# verbose = F)
#
# fit <- analysis_object$tuner_fit
#
# expect_equal(fit$.predictions[[1]]$hidden_units[1], 3)
#
# expect_equal(fit$.predictions[[1]]$learn_rate[1], 1.002305, tolerance = 1e-2)
#
# expect_equal(fit$.predictions[[1]]$.pred[1], 69.78333, tolerance = 5e-2)
#
# })
#
# test_that("Check fine_tuning wrong metric",{
#
# formula = "psych_well ~ gender + age + socioec_status + depression"
#
# hyper_nn_tune_list = list(
# learn_rate = c(-2, -1),
# hidden_units = c(3,10)
# )
#
# set.seed(123)
#
# analysis_object <- preprocessing(df = sim_data, formula = formula, task = "regression")
#
# analysis_object <- build_model(analysis_object = analysis_object,
# model_name = "Neural Network",
# hyperparameters = hyper_nn_tune_list)
#
# expect_error(fine_tuning(analysis_object = analysis_object,
# tuner = "Bayesian Optimization",
# metrics = "roc_auc",
# verbose = F))
#
# })
#
# test_that("Check fine_tuning plot_results not Boolean",{
#
# formula = "psych_well ~ gender + age + socioec_status + depression"
#
# hyper_nn_tune_list = list(
# learn_rate = c(-2, -1),
# hidden_units = c(3,10)
# )
#
# set.seed(123)
#
# analysis_object <- preprocessing(df = sim_data, formula = formula, task = "regression")
#
# analysis_object <- build_model(analysis_object = analysis_object,
# model_name = "Neural Network",
# hyperparameters = hyper_nn_tune_list)
#
# expect_error(fine_tuning(analysis_object = analysis_object,
# tuner = "Bayesian Optimization",
# metrics = "rmse",
# verbose = F,
# plot_results = "re"))
#
# })
#
# test_that("Check fine_tuning tuner typo",{
#
# formula = "psych_well ~ gender + age + socioec_status + depression"
#
# hyper_nn_tune_list = list(
# learn_rate = c(-2, -1),
# hidden_units = c(3,10)
# )
#
# analysis_object <- preprocessing(df = sim_data, formula = formula, task = "regression")
#
# analysis_object <- build_model(analysis_object = analysis_object,
# model_name = "Neural Network",
# hyperparameters = hyper_nn_tune_list)
#
# expect_error(fine_tuning(analysis_object = analysis_object,
# tuner = "Bayesian Optimisation",
# metrics = "rmse",
# verbose = F))
#
# })
#
#
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.