Nothing
# test_that("PFI works properly regression", {
#
# formula = "psych_well ~ gender + age + socioec_status + depression"
#
# hyper_nn_tune_list = list(
# learn_rate = c(-2, -1),
# hidden_units = c(3,10)
# )
#
# set.seed(123)
#
# analysis_object <- preprocessing(df = sim_data, formula = formula, task = "regression")
#
# analysis_object <- build_model(analysis_object = analysis_object,
# model_name = "Neural Network",
# hyperparameters = hyper_nn_tune_list)
#
# analysis_object <- fine_tuning(analysis_object = analysis_object,
# tuner = "Bayesian Optimization",
# metrics = "rmse",
# verbose = F)
#
# analysis_object <- sensitivity_analysis(analysis_object, methods = c("PFI", "SHAP",
# "Integrated Gradients", "Olden"))
#
# pfi <- analysis_object$sensitivity_analysis$PFI
# shap <- analysis_object$sensitivity_analysis$SHAP
# int_grad <- analysis_object$sensitivity_analysis$IntegratedGradients
# olden <- analysis_object$sensitivity_analysis$Olden
#
# expect_equal(pfi$Importance[[1]], 17.70069, tolerance = 1e-1)
# expect_equal(shap$depression[1], 18.16909, tolerance = 1e-1)
# expect_equal(int_grad$depression[1], 0.82378044, tolerance = 1e-1)
# expect_equal(olden$depression[1], -0.6505, tolerance = 1e-1)
#
#
# })
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.