Description Usage Arguments Details Value Author(s) See Also Examples
Computes the root mean squared error (RMSE) of a Monte Carlo sample of forecasts.
1 | rmse(m1, m2)
|
m1 |
Forecast sample for model 1 |
m2 |
Forecast sample for model 2 |
User needs to subset the forecasts if necessary.
Forecast RMSE.
Patrick T. Brandt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | data(IsraelPalestineConflict)
Y.sample1 <- window(IsraelPalestineConflict, end=c(2002, 52))
Y.sample2 <- window(IsraelPalestineConflict, start=c(2003,1))
# Fit a BVAR model
fit.bvar <- szbvar(Y.sample1, p=6, lambda0=0.6, lambda1=0.1, lambda3=2,
lambda4=0.25, lambda5=0, mu5=0, mu6=0, prior=0)
# Forecast -- this gives back the sample PLUS the forecasts!
forecasts <- forecast(fit.bvar, nsteps=nrow(Y.sample2))
# Compare forecasts to real data
rmse(forecasts[(nrow(Y.sample1)+1):nrow(forecasts),], Y.sample2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.