Nothing
#' @importFrom rlang .data
#' @export
#'
#' @title Convert world borders shapefile
#'
#' @description Returns a simple features data frame for world divisions
#'
#' The full resolution file will be named "TMWorldBorders.rda". In addition,
#' "_05", _02" and "_01" versions of the file will be created that that are
#' simplified to 5\%, 2\% and 1\%. Simplified versions will greatly improve the
#' speed of both searching and plotting.
#'
#' @details A world borders shapefile is downloaded and converted to a
#' simple features data frame with additional columns of data. The resulting file is
#' created in the spatial data directory which is set with \code{setSpatialDataDir()}.
#'
#' @return Name of the datasetName being created.
#'
#' @references \url{https://thematicmapping.org/}
#'
convertTMWorldBorders <- function() {
# ----- Setup ----------------------------------------------------------------
# Use package internal data directory
dataDir <- getSpatialDataDir()
# Specify the name of the dataset and file being created
datasetName <- 'TMWorldBorders'
# ----- Get the data ---------------------------------------------------------
# Build appropriate request URL for TM World Borders data
url <- "http://thematicmapping.org/downloads/TM_WORLD_BORDERS-0.3.zip"
filePath <- file.path(dataDir, basename(url))
utils::download.file(url, filePath)
# NOTE: This zip file has no directory so extra subdirectory needs to be created
utils::unzip(filePath, exdir = file.path(dataDir, 'world'))
# ----- Convert to SFDF ------------------------------------------------------
# Convert shapefile into simple features data frame
# NOTE: The 'world' directory has been created
dsnPath <- file.path(dataDir, 'world')
shpName <- 'TM_WORLD_BORDERS-0.3'
SFDF <- convertLayer(
dsn = dsnPath,
layer = shpName
)
# ----- Select useful columns and rename -------------------------------------
# > dplyr::glimpse(SFDF, width = 75)
# Rows: 246
# Columns: 12
# $ FIPS <chr> "AC", "AG", "AJ", "AL", "AM", "AO", "AQ", "AR", "AS", "…
# $ ISO2 <chr> "AG", "DZ", "AZ", "AL", "AM", "AO", "AS", "AR", "AU", "…
# $ ISO3 <chr> "ATG", "DZA", "AZE", "ALB", "ARM", "AGO", "ASM", "ARG",…
# $ UN <int> 28, 12, 31, 8, 51, 24, 16, 32, 36, 48, 52, 60, 44, 50, …
# $ NAME <chr> "Antigua and Barbuda", "Algeria", "Azerbaijan", "Albani…
# $ AREA <int> 44, 238174, 8260, 2740, 2820, 124670, 20, 273669, 76823…
# $ POP2005 <dbl> 83039, 32854159, 8352021, 3153731, 3017661, 16095214, 6…
# $ REGION <int> 19, 2, 142, 150, 142, 2, 9, 19, 9, 142, 19, 19, 19, 142…
# $ SUBREGION <int> 29, 15, 145, 39, 145, 17, 61, 5, 53, 145, 29, 21, 29, 3…
# $ LON <dbl> -61.783, 2.632, 47.395, 20.068, 44.563, 17.544, -170.73…
# $ LAT <dbl> 17.078, 28.163, 40.430, 41.143, 40.534, -12.296, -14.31…
# $ geometry <MULTIPOLYGON [°]> MULTIPOLYGON (((-61.68667 1..., MULTIPOLYG…
# Data Dictionary:
# FIPS ------> FIPS: 2-digit FIPS code
# ISO2 ------> countryCode
# ISO3 ------> ISO3
# UN --------> UN_country
# NAME ------> countryName
# AREA ------> area
# POP2005 ---> population2005
# REGION ----> UN_region
# SUBREGION -> UN_subregion
# LON -------> longitude
# LAT -------> latitude
# Create the new dataframe in a specific column order
SFDF <-
SFDF %>%
dplyr::select(
FIPS = .data$FIPS,
countryCode = .data$ISO2,
ISO3 = .data$ISO3,
UN_country = .data$UN,
countryName = .data$NAME,
area = .data$AREA,
population2005 = .data$POP2005,
UN_region = .data$REGION,
UN_subregion = .data$SUBREGION,
longitude = .data$LON,
latitude = .data$LAT
)
# TODO: Is this iconv() step still necessary now that we're using *sf*
# NOTE: http://conjugateprior.org/2013/01/unicode-in-r-packages-not/
# Transliterate unicode characters for this package-internal datasetName
SFDF$countryName <- iconv(SFDF$countryName, from = "UTF-8", to = "ASCII//TRANSLIT")
# Rationalize units: convert area from units of 10 km^2 to m^2
SFDF$area <- SFDF$area * 1e7
# ----- Simplify and save ----------------------------------------------------
uniqueIdentifier <- "countryCode"
simplifyAndSave(
SFDF = SFDF,
datasetName = datasetName,
uniqueIdentifier = uniqueIdentifier,
dataDir = dataDir
)
# ----- Clean up and return --------------------------------------------------
# Clean up
unlink(filePath, force = TRUE)
unlink(dsnPath, recursive = TRUE, force = TRUE)
return(invisible(datasetName))
}
# ===== TEST ===================================================================
if ( FALSE ) {
library(sf)
# Look or horizontal lines from polygons that cross the dateline.
# NOTE: These are sometimes created by sf::st_make_valid()
loadSpatialData(datasetName)
SFDF <- get(paste0(datasetName, ""))
SFDF_05 <- get(paste0(datasetName, "_05"))
SFDF_02 <- get(paste0(datasetName, "_02"))
SFDF_01 <- get(paste0(datasetName, "_01"))
plot(SFDF_01$geometry)
dev.off(dev.list()["RStudioGD"])
plot(SFDF_02$geometry)
dev.off(dev.list()["RStudioGD"])
plot(SFDF_05$geometry)
dev.off(dev.list()["RStudioGD"])
#plot(SFDF$geometry)
# Try out getSpatialData()
lons <- c(-120:-110, 0:10)
lats <- c(30:40, 30:40)
df <- getSpatialData(lons, lats, SFDF_01)
df <- getSpatialData(lons, lats, SFDF_02)
df <- getSpatialData(lons, lats, SFDF_05)
df <- getSpatialData(lons, lats, SFDF)
# Special Case of Russian failing to plot properly
SFDF %>% dplyr::filter(countryCode == "RU") %>% sf::st_geometry() %>% plot()
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.