Nothing
#' @keywords datagen
#' @export
#'
#' @title Convert US congressional districts shapefile
#'
#' @description Returns a simple features data frame for US Congressional Districts
#' for the 116th US House of Representatives.
#'
#' The full resolution file will be named "USCensus116thCongress.rda". In addition,
#' "_05", _02" and "_01" versions of the file will be created that that are
#' simplified to 5\%, 2\% and 1\%. Simplified versions will greatly improve the
#' speed of both searching and plotting.
#'
#' @details A US congressional district shapefile is downloaded and converted to
#' a simple features data frame with additional columns of data. The resulting
#' file will be created in the spatial data directory which is set with
#' \code{setSpatialDataDir()}.
#'
#' #' The source data is from 2021.
#'
#' @note From the source documentation:
#'
#' Congressional Districts are the 435 areas from which people are elected to the
#' U.S. House of Representatives. After the apportionment of congressional seats
#' among the states based on census population counts, each state is responsible
#' for establishing congressional districts for the purpose of electing representatives.
#' Each congressional district is to be as equal in population to all other
#' congressional districts in a state as practicable. The 116th Congress is seated
#' from January 2019 to 2021. The cartographic boundary files for the District of
#' Columbia, Puerto Rico, and the Island Areas (American Samoa, Guam, the Commonwealth
#' of the Northern Mariana Islands, and the U.S. Virgin Islands) each contain a
#' single record for the non-voting delegate district in these areas. The boundaries
#' of all other congressional districts are provided to the Census Bureau by the
#' states by May 1, 2018.
#'
#' You can join this file with table data downloaded from American FactFinder by
#' using the AFFGEOID field in the cartographic boundary file.
#'
#' @return Name of the datasetName being created.
#'
#' @references \url{https://www2.census.gov/geo/tiger/GENZ2021/}
#'
#' @seealso setSpatialDataDir
convertUSCensusCongress <- function() {
# ----- Setup ----------------------------------------------------------------
# Use package internal data directory
dataDir <- getSpatialDataDir()
# Specify the name of the dataset and file being created
datasetName <- 'USCensus116thCongress'
# ----- Get the data ---------------------------------------------------------
# Build appropriate request URL
# NOTE: 500k means resolution level 1:500k.
# RC Note: cd116 means Congressional District (116th Congress)
url <- 'https://www2.census.gov/geo/tiger/GENZ2021/shp/cb_2021_us_cd116_500k.zip'
filePath <- file.path(dataDir, basename(url))
utils::download.file(url, filePath)
# NOTE: This zip file has no directory so extra subdirectory needs to be created
utils::unzip(filePath, exdir = file.path(dataDir, 'congress'))
# ----- Convert to SFDF ------------------------------------------------------
# Convert shapefile into simple features data frame
# NOTE: The 'congress' directory has been created
dsnPath <- file.path(dataDir,'congress')
shpName <- 'cb_2021_us_cd116_500k'
SFDF <- convertLayer(
dsn = dsnPath,
layer = shpName
)
# ----- Select useful columns and rename -------------------------------------
# > dplyr::glimpse(SFDF, width = 75)
# Rows: 441
# Columns: 10
# $ STATEFP <chr> "06", "22", "35", "41", "53", "06", "36", "01", "09", "2…
# $ CD116FP <chr> "15", "04", "03", "02", "03", "31", "06", "01", "04", "0…
# $ AFFGEOID <chr> "5001600US0615", "5001600US2204", "5001600US3503", "5001…
# $ GEOID <chr> "0615", "2204", "3503", "4102", "5303", "0631", "3606", …
# $ NAMELSAD <chr> "Congressional District 15", "Congressional District 4",…
# $ LSAD <chr> "C2", "C2", "C2", "C2", "C2", "C2", "C2", "C2", "C2", "C…
# $ CDSESSN <chr> "116", "116", "116", "116", "116", "116", "116", "116", …
# $ ALAND <dbl> 1549309489, 32210673963, 116460386484, 179877899384, 236…
# $ AWATER <dbl> 73721922, 1104876825, 301515882, 1885211282, 1216260406,…
# $ geometry <MULTIPOLYGON [°]> MULTIPOLYGON (((-122.1709 3..., MULTIPOLYGO…
# Data Dictionary:
# STATEFP -----> stateFIPS: 2-digit FIPS code
# CD116FP -----> congressionalDistrictFIPS
# AFFGEOID ----> AFFGEOID
# GEOID -------> GeoID
# NAMELSAD ----> (drop)
# LSAD --------> (drop)
# CDSESSN ------> (drop) this is the congressional district session number of the datasetName (116 for all)
# ALAND -------> landArea: land area (in sq. meters)
# AWATER ------> waterArea: water area (in sq. meters)
# Guarantee that ALAND and AWATER are numeric
SFDF$ALAND <- as.numeric(SFDF$ALAND)
SFDF$AWATER <- as.numeric(SFDF$AWATER)
SFDF$countryCode <- "US"
SFDF$stateCode <- US_stateFIPSToCode(SFDF$STATEFP)
# Remove outlying territories
SFDF <- dplyr::filter(SFDF, .data$stateCode %in% US_52)
# Create the new dataframe in a specific column order
SFDF <-
SFDF %>%
dplyr::select(
countryCode = .data$countryCode,
stateCode = .data$stateCode,
stateFIPS = .data$STATEFP,
congressionalDistrictFIPS = .data$CD116FP,
landArea = .data$ALAND,
waterArea = .data$AWATER,
AFFGEOID = .data$AFFGEOID,
GeoID = .data$GEOID
)
# ----- Simplify and save ----------------------------------------------------
uniqueIdentifier <- "GeoID"
simplifyAndSave(
SFDF = SFDF,
datasetName = datasetName,
uniqueIdentifier = uniqueIdentifier,
dataDir = dataDir
)
# ----- Clean up and return --------------------------------------------------
# Clean up
unlink(filePath, force = TRUE)
unlink(dsnPath, recursive = TRUE, force = TRUE)
return(invisible(datasetName))
}
# ===== TEST ===================================================================
if ( FALSE ) {
library(sf)
# Look or horizontal lines from polygons that cross the dateline.
# NOTE: These are sometimes created by sf::st_make_valid()
loadSpatialData(datasetName)
SFDF <- get(paste0(datasetName, ""))
SFDF_05 <- get(paste0(datasetName, "_05"))
SFDF_02 <- get(paste0(datasetName, "_02"))
SFDF_01 <- get(paste0(datasetName, "_01"))
plot(SFDF_01$geometry)
dev.off(dev.list()["RStudioGD"])
plot(SFDF_02$geometry)
dev.off(dev.list()["RStudioGD"])
plot(SFDF_05$geometry)
dev.off(dev.list()["RStudioGD"])
#plot(SFDF$geometry)
# Try out getSpatialData()
lons <- c(-120:-110, 0:10)
lats <- c(30:40, 30:40)
df <- getSpatialData(lons, lats, SFDF_01)
df <- getSpatialData(lons, lats, SFDF_02)
df <- getSpatialData(lons, lats, SFDF_05)
df <- getSpatialData(lons, lats, SFDF)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.